Прогрессии принадлежат члены 2 и 4. Если между ними ничего нет, то это прогрессия из чётных чисел. Если есть ровно одно промежуточное число, то это прогрессия из всех натуральных чисел, начиная с двойки. Покажем, что ничего другого быть не может. Если между 2 и 4 есть более одного числа, то разность прогрессии является рациональным, но не целым числом. Запишем её в виде несократимой дроби: d=m/n, где n>1. Тогда все члены прогрессии будут рациональными числами с ограниченными в совокупностями знаменателями (делителями n). С другой стороны, при возведении в квадрат числa a2=2+d=2n+mn, которое также записано в виде несократимой дроби, получится несократимая дробь со знаменателем n2, и это противоречит сказанному выше.
2x^2 = -18 | (делим на 2)
X^2 = -9
X1 = 3 и x2 = -3
3) x^2 + x - 6 = 0
D = b^2 -4ac
D = 1^2 - 4*1*(-6) = 1 + 24 = 25
X1 = -1+ корень из 25/2 = -1+5/2 = 4/2 = 2
X2 = -1 - корень из 25/2 = -1 -5/2 = -6/2 = -3
4) так же ка второе
5) 4x^2 - 36 = 0 | делим все на 4
X^2 - 9 = 0
X^2 = 9
X = 3 и x2= -3
6) x^4 -25x +144 = 0
X = t (тут замена, вроде)
X^2 -25x + 144 = 0
D = (-25)^2 - 4*1*144 = 625 - 576 = 49
X1 = -(-25)+ корень из 49 = 25+7 = 32
X2= -(-25) - корень из 49 = 25 -7 = 18
Дальше нужно подставлять куда-то в замену вроде, я не помню
Покажем, что ничего другого быть не может. Если между 2 и 4 есть более одного числа, то разность прогрессии является рациональным, но не целым числом. Запишем её в виде несократимой дроби: d=m/n, где n>1. Тогда все члены прогрессии будут рациональными числами с ограниченными в совокупностями знаменателями (делителями n).
С другой стороны, при возведении в квадрат числa a2=2+d=2n+mn, которое также записано в виде несократимой дроби, получится несократимая дробь со знаменателем n2, и это противоречит сказанному выше.