Квадратные уравнения. 1. Решите уравнение:
1) 6х2 + 18х = 0.
2) 4х2 – 9 = 0.
3) x2 – 8x + 7 = 0.
4) 3х2 + 5x + 6 = 0.
5) (4х + 3)2 = (2х – 1)2.
6) x2 – 3ах – 4а2 = 0.
2. Один из корней уравнения x2 + 11х + а = 0 равен 3. Найдите другой корень и коэффициент а.
3. Периметр прямоугольника равен 22 см, а его площадь — 24 см2. Найдите длины сторон прямоугольника.
4. Даны четыре последовательных целых числа. Сумма произведений двух крайних и двух средних чисел равна 38. Найдите эти числа.
5. Уравнение x2 + 2х – 3а2 = 0 имеет корни х1 и x2. Напишите квадратное уравнение, корни которого равны х1 – 1 и x2 – 1.
1) 2sin x-1=0
sinx = 1/2
x = (-1)^n arcsin(1/2) + πk, k∈Z
x = (-1)^n (π/6) + πk, k∈Z
2) cos(2x+П/6)+1=0
cos(2x+П/6) = - 1
2x+П/6 = π + 2πn, n∈Z
2x = π - π/6 + 2πn, n∈Z
2x = 5π/6 + 2πn, n∈Z
x = 5π/12 + πn, n∈Z
3) 6sin²x - 5cosx + 5 = 0
6(1 - cos²x) - 5cosx + 5 = 0
6 - 6cos²x - 5cosx + 5 = 0
6cos²x + 5cosx - 11 = 0
cosx = t, ItI ≤ 1
6t² + 5t - 11 = 0
D = 25 + 4*6*11 = 289
t₁ = (- 5 - 17)/12
t₁ = - 22/12
t₁ = -11/6
t₁ = - 1 (5/6) не удовлетворяет условию ItI ≤ 1
t₂ = (- 5 + 11)/12
t₂ = 1/2
cosx = 1/2
x = (+ -)arccos(1/2) + 2πm, m∈Z
x = (+ -) *(π/3) + 2πm, m∈Z
Примем за 1 - объем цистерны
Пусть t цис./ч - производительность "медленного" насоса.
Тогда 3t цис./ч - производительность "быстрого" насоса.
(t+3t) цис./ч - производительность системы при совместной работе этих двух насосов.
(t+3t) - объем работы системы из двух насосов за 2ч 15мин.
Получим уравнение:
9t = 1
Значит, - цис./ч - производительность "медленного" насоса.
Тогда - цис./ч - производительность "быстрого" насоса.
Следовательно, ч - потребуется "быстрому" насосу на заполнение цистерны.
ответ: 3 ч.