Рассмотрим сразу числитель: sin 10 cos 55 + sin 280 sin 55 = sin 10 cos 55 + sin (270 + 10) sin 55 = [формулы приведения] = sin 10 cos 55 + (-cos 10) sin 55 = [sin (a-b) = sin a cos b - sin b cos a] = sin (10 - 55) = sin (-45) = - sin 45 = -√2/2 Знаменатель: sin 10 cos 110 + sin 260 cos 200 = sin 10 cos (90 + 20) + sin (270 - 10) cos (180 +20) = sin 10 (-sin 20) + (-cos 10) (-cos 20) = cos 10 cos 20 - sin 20 sin 10 = [cos(a+b) = cos a cos b - sin a sin b] = cos (10+20) = cos 30 = √3/2 Все выражение: √6 * (-√2/2) / (√3/2) = -√6*√2*2 / (2√3) = -√2 * √2 = -2
Прямоугольный треугольник с катетами 3 и 4 - египетский, его гипотенуза 5 ( проверьте по т.Пифагора).
Проекция ВС наклонной В1С перпендикулярна СА. По т. о 3-х перпендикулярах В1С⊥СА. Треугольник В1СА - прямоугольный с углом В1АС=60°. В1С=АС•tg60°=4√3. Т.к. призма прямая, боковые ребра перпендикулярны основаниям, поэтому треугольник В1ВС прямоугольный. По т. Пифагора В1В=√(B1C²-BC²)=√[(4√3)²-3²]=√39
Боковое ребро прямой призмы является её высотой, а её боковые грани - прямоугольники.
Площадь боковой поверхности призмы находят умножением её высоты на периметр основания.
sin 10 cos 55 + sin 280 sin 55 = sin 10 cos 55 + sin (270 + 10) sin 55 = [формулы приведения] = sin 10 cos 55 + (-cos 10) sin 55 = [sin (a-b) = sin a cos b - sin b cos a] = sin (10 - 55) = sin (-45) = - sin 45 = -√2/2
Знаменатель:
sin 10 cos 110 + sin 260 cos 200 = sin 10 cos (90 + 20) + sin (270 - 10) cos (180 +20) = sin 10 (-sin 20) + (-cos 10) (-cos 20) = cos 10 cos 20 - sin 20 sin 10 = [cos(a+b) = cos a cos b - sin a sin b] = cos (10+20) = cos 30 = √3/2
Все выражение:
√6 * (-√2/2) / (√3/2) = -√6*√2*2 / (2√3) = -√2 * √2 = -2
ответ: 12√39 (ед. площади)
Объяснение:
Прямоугольный треугольник с катетами 3 и 4 - египетский, его гипотенуза 5 ( проверьте по т.Пифагора).
Проекция ВС наклонной В1С перпендикулярна СА. По т. о 3-х перпендикулярах В1С⊥СА. Треугольник В1СА - прямоугольный с углом В1АС=60°. В1С=АС•tg60°=4√3. Т.к. призма прямая, боковые ребра перпендикулярны основаниям, поэтому треугольник В1ВС прямоугольный. По т. Пифагора В1В=√(B1C²-BC²)=√[(4√3)²-3²]=√39
Боковое ребро прямой призмы является её высотой, а её боковые грани - прямоугольники.
Площадь боковой поверхности призмы находят умножением её высоты на периметр основания.
S(бок)=В1В•(АВ+ВС+АС)=√39•12=12√39 (ед. площади)