Пусть 2-я труба наполняет бассейн за х часов, тогда 1-я труба наполняет бассейно за (х -18) часов. производительность (работа за 1 час) 1-й трубы: 1/(х -18), 2-й трубы: 1/х. их общая производительность: 1/(х -18) + 1/х. работая вместе, они сделали всю работу (равную 1) за 12 часов (1/(х -18) + 1/х)·12 = 112·(х + х - 18) = х² - 18х х² - 42х + 216 = 0 d = 42² - 4·216 = 900 √d = 30 х₁ = (42 - 30) : 2 = 6 (не подходит по условию , даже работая вместе трубы наполняют бассейн за 12 часов! ) х₂ = (42 + 30) : 2 = 36 ответ: 2-я труба наполняет бассейн за 36 часов
1)c3h6+hoh(н+) =c3h7oh-получение
2c3h7oh+2na=2c3h7ona+h2
ch3-ch2-ch2oh+cuo(t) =ch3-ch2-coh+cu+h2o
2)сh3-ch2-ch2-ch2oh + cuo(t) =ch3-ch2-ch2-coh +cu+h2o-получение
ch3-ch2-ch2-coh+h2=ch3-ch2-ch2-ch2oh
ch3-ch2-ch2-coh+ag2o(t) = ch3-ch2-ch2-cooh+2ag
3)2ch3-(ch2)3-cooh+2na=2ch3-(ch2)3-coona+h2
2ch3-(ch2)3-cooh+mgo=(ch3-ch2-ch2-ch2-coo)2mg+h2o
ch3-(ch2)3-cooh+naoh=ch3-(ch2)3-coona+h2o
2ch3-(ch2)3-cooh+na2co3=2ch3-(ch2)3-coona+co2+h2o
4)c2h5oh+ch3-cooh= c2h5-o-co-ch3+h2o
c5h11oh+h-cooh= c5h11-o-co-h +h2o
c7h13oh+c2h5-cooh= c7h13-o-co-c2h5+h2o
c5h11oh+ c5h11-cooh=c5h11-o-co-c5h11+ h2o