Скорее всего тут надо аналитически, там более до 10 класса вроде как не изучают производные) Квадрат числа - всегда не отрицателен (больше или равен 0) и довольно большой. Поэтому надо бы взять минимальный возможный вариант для х^2 - это 0.
Во-первых, упростим:
Тогда, если х=0, то:
( так как при умножении на 0 будет 0)
Ну, если y - любое, то можно взять минус бесконечность. Соответствеено и ответ будет минус бесконечность..
(Но если честно, странно, что пример можно успростить ещё..Может, вы не так списали?..)
Допустим, автобус выходит из А в 6 утра и приходит в В в 10. Следующий выходит в 7, потом в 8, в 9, в 10, в 11, в 12, в 13. Придя в 10 утра в В, он разворачивается и едет обратно. В А он возвращается в 14. Автобус, который вышел из А в 7, к 10 часам проедет 3/4 дороги. А в 10:30 он проедет 3/4 + 1/8 = 7/8 и встретит первый автобус, который в 10 вышел из В. Автобус, который вышел в 8, к 10 часам проедет 1/2 дороги. А в 10:30 он проедет 1/2 + 1/8 = 5/8 дороги. И ровно в 11 он проедет 3/4 дороги и встретит первый автобус. И дальше все точно также. Таким образом, если я увидел встречный автобус, то следующий я увижу через полчаса.
Во-первых, упростим:
Тогда, если х=0, то:
( так как при умножении на 0 будет 0)
Ну, если y - любое, то можно взять минус бесконечность.
Соответствеено и ответ будет минус бесконечность..
(Но если честно, странно, что пример можно успростить ещё..Может, вы не так списали?..)
Следующий выходит в 7, потом в 8, в 9, в 10, в 11, в 12, в 13.
Придя в 10 утра в В, он разворачивается и едет обратно.
В А он возвращается в 14.
Автобус, который вышел из А в 7, к 10 часам проедет 3/4 дороги.
А в 10:30 он проедет 3/4 + 1/8 = 7/8 и встретит первый автобус,
который в 10 вышел из В.
Автобус, который вышел в 8, к 10 часам проедет 1/2 дороги.
А в 10:30 он проедет 1/2 + 1/8 = 5/8 дороги.
И ровно в 11 он проедет 3/4 дороги и встретит первый автобус.
И дальше все точно также.
Таким образом, если я увидел встречный автобус, то следующий я увижу через полчаса.