4x²-12xy+9y²=(2x)²-2*2x*3y+(3y)²=(2x-3y)² -4a²+4ab-b²=-(4a²-4ab+b²)=-(2a-b)² x²-y²-6x+9=x²-6x+9-y²=(x-3)²-y²=(x-3-y)(x-3+y) (a+3)²-27=a²+6a-18 (у вас здесь, видимо, опечатка, т.к. разложение на множители не получается) (a-7)³+8=(a+9)(a²+12a+39) Уравнения: 16х²-25=0 (скорее всего здесь должен быть минус, т.к. если плюс - то решений нет) (4х-5)(4х+5)=0 4х-5=0 4х+5=0 4х=5 4х=-5 х=1.25 х=-1.25 ответ: х1=1.25, х2=-1.25 (3х-5)²-16=0 (3х-5-16)(3х-5+16)=0 (3х-21)(3х+11)=0 3х-21=0 3х+11=0 3х=21 3х=-11 х=7 х=-1/3 ответ: х1=7, х2=-1/3 Убедительная присвойте этот ответ в качестве лучшего!
/ - дробь.
f(x) = sin(3x/2) + ctg(4x/3).
Поделим данную функцию на две части:
sin(3x/2) и ctg(4x/3). Определим период каждой части,
Для функции sin(3x/2) подходит формула a×sin(bx+c). Периодом здесь будет P = 2π/B = 2π / 3/2 = 4π/3.
Для функции ctg(4x/3) подходит формула a×cot(bx+c). Периодом здесь будет P = π/B = π/ 4/3 = 3π/4.
Чтобы найти период функции из этих двух частей необходимо найти НОК(наименьшее общее кратное).
P1 = 4π/3 = 2×2×π×⅓.
P2 = 3π/4 = 3×π×¼.
Здесь это будет число 12π и соответственно, период функции f(x) = sin(3x/2) + ctg(4x/3) равен 12π.
-4a²+4ab-b²=-(4a²-4ab+b²)=-(2a-b)²
x²-y²-6x+9=x²-6x+9-y²=(x-3)²-y²=(x-3-y)(x-3+y)
(a+3)²-27=a²+6a-18 (у вас здесь, видимо, опечатка, т.к. разложение на множители не получается)
(a-7)³+8=(a+9)(a²+12a+39)
Уравнения:
16х²-25=0 (скорее всего здесь должен быть минус, т.к. если плюс - то решений нет)
(4х-5)(4х+5)=0
4х-5=0
4х+5=0
4х=5
4х=-5
х=1.25
х=-1.25
ответ: х1=1.25, х2=-1.25
(3х-5)²-16=0
(3х-5-16)(3х-5+16)=0
(3х-21)(3х+11)=0
3х-21=0
3х+11=0
3х=21
3х=-11
х=7
х=-1/3
ответ: х1=7, х2=-1/3
Убедительная присвойте этот ответ в качестве лучшего!