Область определения функции D(у) - это множество всех допустимых значений аргумента x (независимой переменной x), при которых выражение, стоящее в правой части уравнения функции y = f(x) имеет смысл. Другими словами, это область допустимых значений выражения f(x).
Чтобы по графику функции y = f(x) найти ее область определения, нужно, двигаясь слева направо вдоль оси ОХ, записать все промежутки значений х, на которых существует график функции.
Множество значений фнкции Е(у) - это множество всех значений, которые может принимать зависимая переменная y.
Чтобы по графику функции y = f(x) найти ее множество значений, нужно, двигаясь снизу вверх вдоль оси OY, записать все промежутки значений y, на которых существует график функции.
Обратная функция — функция y=g(x), которая получается из данной функции y = f(x), если из отношения x = f(у) выразить y через x.
Чтобы для данной функции y = f(x) найти обратную, надо:
В соотношении y = f(x) заменить x на y, а y — на x: x = f(у) .
В полученном выражении x=f(у) выразить y через x.
Функции f(x) и g(x) — взаимно обратны. Рассмотрим это на примере
Примеры нахождения обратных функций:
size 12px 1 size 12px right parenthesis size 12px space size 12px space size 12px y size 12px equals size 12px 3 size 12px x size 12px minus size 12px 8
size 12px space size 12px space size 12px space size 12px space size 12px space size 12px space size 12px x size 12px equals size 12px 3 size 12px y size 12px minus size 12px 8 size 12px rightwards double arrow size 12px 3 size 12px y size 12px equals size 12px x size 12px plus size 12px 8 size 12px rightwards double arrow fraction numerator size 12px x size 12px plus size 12px 8 over denominator size 12px 3 end fraction
size 12px 2 size 12px right parenthesis size 12px space size 12px space size 12px y size 12px equals size 12px 11 size 12px minus size 12px 5 size 12px x
size 12px space size 12px space size 12px space size 12px space size 12px space size 12px space size 12px x size 12px equals size 12px 11 size 12px minus size 12px 5 size 12px y size 12px rightwards double arrow size 12px 5 size 12px y size 12px equals size 12px 11 size 12px minus size 12px x size 12px rightwards double arrow size 12px y size 12px equals fraction numerator size 12px 11 size 12px minus size 12px x over denominator size 12px 5 end fraction
ответ:Для того чтобы перемножить данные множители для начала упростим следующим образом. Вынесем за скобки общий множитель 3 из третьего множителя и запишем так:
3 х (q - 2) x (6q + 1) x (q - 2).
Множитель (q - 2) повторяется дважды, поэтому запишем его в квадрате:
3 x (q - 2)^2 x (6q + 1).
Возведем первый множитель в квадрат и получим следующее:
3 х (q^2 - 4q + 4) x (6q + 1).
Теперь перемножим многочлены и получим:
3 х (6q^3 +q^2 - 24q^2 - 4q + 24q + 4).
Выполним действия с однородными членами и получим:
формулой.
Функции подразделяются на следующие виды:
Линейная функция
Квадратичная функция
Кубическая функция
Тригонометрическая функция
Степенная функция
Показательная функция
Логарифмическая функция
Область определения функции D(у) - это множество всех допустимых значений аргумента x (независимой переменной x), при которых выражение, стоящее в правой части уравнения функции y = f(x) имеет смысл. Другими словами, это область допустимых значений выражения f(x).
Чтобы по графику функции y = f(x) найти ее область определения, нужно, двигаясь слева направо вдоль оси ОХ, записать все промежутки значений х, на которых существует график функции.
Множество значений фнкции Е(у) - это множество всех значений, которые может принимать зависимая переменная y.
Чтобы по графику функции y = f(x) найти ее множество значений, нужно, двигаясь снизу вверх вдоль оси OY, записать все промежутки значений y, на которых существует график функции.
Обратная функция — функция y=g(x), которая получается из данной функции y = f(x), если из отношения x = f(у) выразить y через x.
Чтобы для данной функции y = f(x) найти обратную, надо:
В соотношении y = f(x) заменить x на y, а y — на x: x = f(у) .
В полученном выражении x=f(у) выразить y через x.
Функции f(x) и g(x) — взаимно обратны. Рассмотрим это на примере
Примеры нахождения обратных функций:
size 12px 1 size 12px right parenthesis size 12px space size 12px space size 12px y size 12px equals size 12px 3 size 12px x size 12px minus size 12px 8
size 12px space size 12px space size 12px space size 12px space size 12px space size 12px space size 12px x size 12px equals size 12px 3 size 12px y size 12px minus size 12px 8 size 12px rightwards double arrow size 12px 3 size 12px y size 12px equals size 12px x size 12px plus size 12px 8 size 12px rightwards double arrow fraction numerator size 12px x size 12px plus size 12px 8 over denominator size 12px 3 end fraction
size 12px 2 size 12px right parenthesis size 12px space size 12px space size 12px y size 12px equals size 12px 11 size 12px minus size 12px 5 size 12px x
size 12px space size 12px space size 12px space size 12px space size 12px space size 12px space size 12px x size 12px equals size 12px 11 size 12px minus size 12px 5 size 12px y size 12px rightwards double arrow size 12px 5 size 12px y size 12px equals size 12px 11 size 12px minus size 12px x size 12px rightwards double arrow size 12px y size 12px equals fraction numerator size 12px 11 size 12px minus size 12px x over denominator size 12px 5 end fraction
ответ:Для того чтобы перемножить данные множители для начала упростим следующим образом. Вынесем за скобки общий множитель 3 из третьего множителя и запишем так:
3 х (q - 2) x (6q + 1) x (q - 2).
Множитель (q - 2) повторяется дважды, поэтому запишем его в квадрате:
3 x (q - 2)^2 x (6q + 1).
Возведем первый множитель в квадрат и получим следующее:
3 х (q^2 - 4q + 4) x (6q + 1).
Теперь перемножим многочлены и получим:
3 х (6q^3 +q^2 - 24q^2 - 4q + 24q + 4).
Выполним действия с однородными членами и получим:
3 х (6q^3 - 23q^2 + 23q + 4) =
18q^3 - 69q^2 + 69q + 12.
Объяснение: