В первом отпадает корень -10 т.к. под корнем должны быть только полож. числа. в третьем не подходит 3 (-2=2). а вот второй
Объяснение:
Корень 4 степени из х^2 это все равно, что корень из х. получаем
sqrt(x)+12=x
пусть sqrt(x)=t. Тогда
t+12=t^2
-t^2 + t + 12 = 0
t^2 - t - 12 = 0
D = 1+48=49
t1 = (-1+7)/2 = 6
t2 = (-1-7)/2 = -4
Обратная замена:
1) t = 6, тогда sqrt(x)=6 (x=36)
2) t = -4, sqrt(x)=-4 (x=16)
При этом один из этих корней точно лишний, т.к изначально уравнение было 1 степени и имело лишь 1 корень. При подстановке вручную убеждаемся, что подходит х=16
В первом отпадает корень -10 т.к. под корнем должны быть только полож. числа. в третьем не подходит 3 (-2=2). а вот второй
Объяснение:
Корень 4 степени из х^2 это все равно, что корень из х. получаем
sqrt(x)+12=x
пусть sqrt(x)=t. Тогда
t+12=t^2
-t^2 + t + 12 = 0
t^2 - t - 12 = 0
D = 1+48=49
t1 = (-1+7)/2 = 6
t2 = (-1-7)/2 = -4
Обратная замена:
1) t = 6, тогда sqrt(x)=6 (x=36)
2) t = -4, sqrt(x)=-4 (x=16)
При этом один из этих корней точно лишний, т.к изначально уравнение было 1 степени и имело лишь 1 корень. При подстановке вручную убеждаемся, что подходит х=16
По согласованию со спрашивающим в знаменателе 3й дроби Х²-9
одз
x - 3 ≠ 0
x ≠ 3
x + 3 ≠ 0
x≠ -3
x² - 9≠ 0
x ≠ -3 ; x ≠ 3
2x 1 6
- =
x - 3 x + 3 x² - 9
2x * (x + 3) - 1*(x - 3) 6
=
( x - 3) * (x + 3) x² - 9
2x² + 6x - x + 3 6
=
x² - 9 x² - 9
2x² + 5x + 3 6
=
x² - 9 x² - 9
Умножаем обе части уравнения на (x² - 9). Избавляемся от знаменателей.
2x² + 5x + 3 = 6
2x² + 5x + 3 - 6 = 0
2x² + 5x - 3 = 0
D= 5² - 4 * 2 * (-3) = 25 + 24 = 49 > 0 ⇒ уравнение имеет 2 корня
x₁ = (-5 - (-7)) / (2*2) = (-5 + 7) / 4 = 2/4 = 1/2 = 0,5 (корень отвечает одз)
x₂ = (-5 - 7) / (2*2) = -12/4 = -3 (корень не отвечает одз)
Проверка
2* (1/2) 1 6
- =
1/2 - 3 1/2 + 3 (1/2)² - 9
1 / (-5/2) - 1 / (7/2) = 6 / (-35/4)
-1*2/5 - 1*2/7 = -6*4/35
-2*7/35 - 2*5/35 = -24/35
-14/35 - 10/35 = -24/35
-24/35 = -24/35
ответ: 1/2