Самое маленькое трехзначное число - это 100. Если полагать, что меньшее из искомых чисел равно 100, то большее = 100*5 = 500 а сумма 500 + 100 = 600. По условию сумма 498, но это меньше, чем 600, чего не может быть. Значит среди трехзначных чисел задача не имеет решений. Пусть х - одно из чисел, тогда 498 - х - второе число, рассотрим два случая: 1. Если х - большее из чисел и тогда имеем уравнение х/(498 - х) = 5; 2. Если х - меньшее число, тогда (498 - х) /х = 5. Решая первое уравнение, получаем х = 2490 - 5х 6х = 2490 х = 415 498 - х = 83. Из второго уравнения находим 498 - х = 5х 6х = 498 х = 83 498 - х = 415. Оба случая привели к одному ответу. ответ: 83 и 415.
Если полагать, что меньшее из искомых чисел равно 100,
то большее = 100*5 = 500
а сумма 500 + 100 = 600.
По условию сумма 498, но это меньше, чем 600, чего не может быть.
Значит среди трехзначных чисел задача не имеет решений.
Пусть х - одно из чисел,
тогда 498 - х - второе число,
рассотрим два случая:
1. Если х - большее из чисел и тогда имеем уравнение
х/(498 - х) = 5;
2. Если х - меньшее число, тогда
(498 - х) /х = 5.
Решая первое уравнение, получаем
х = 2490 - 5х
6х = 2490
х = 415
498 - х = 83.
Из второго уравнения находим
498 - х = 5х
6х = 498
х = 83
498 - х = 415.
Оба случая привели к одному ответу.
ответ: 83 и 415.
Арифметический квадратный корень из некоторого числа - это неотрицательное число, квадрат которого равен некоторому числу.
Обозначается: √а. Т.е. √а = b, причем b ≥ 0 и b² = a.
Например, √4 = 2, т.к. 2² = 2 и 2 ≥ 0.
Тогда:
√а = 3, значит, а = 9, т.к. 3² = 9;
√а = 10, значит, а = 100, т.к. 10² = 100;
√а = 0, значит, а = 0, т.к. 0² = 0;
√а = 0,8, значит, а = 0,64, т.к. 0,8² = 0,64;
√а = 1/4, значит, а = 1/16, т.к. (1/4)² = 1/16;
√а = 0,1, значит, а = 0,01, т.к. 0,1² = 0,01;
√а = 1 целая 2/3 = 5/3, значит, а = 25/9 = 2 целых 7/9, т.к. (5/3)² = 25/9;
√а = 1,1, значит, а = 1,21, т.к. 1,1² = 1,21.