ми хочемо записати усі числа від 3 до 9 у квадрати, зображені на малюнку поруч, так щоб суми чисел у кожному великому квадраті 2x2 були рівними. які цифри можна поставити заміть ,,?" ?
В задаче мы имеем дело с упорядоченной выборкой без повторений. Каждая буква выбирается последовательно, это значит, что буква К выбирается из четырех возможных (О Т К Р ) и вероятность выбора первой буквы К равна
Р(к) = 1/4.
Буква Р выбирается из оставшихся трех (О Т Р ) и вероятность выбора второй буквы Р равна Р(р) = 1/3.
Далее выбираем букву О из оставшихся двух (О Т) и вероятность выбора третьей буквы О равна Р(о) = 1/2.
Тогда для буквы Т останется вероятность выбора Р(т) = 1.
Таким образом, вероятность искомого события равна произведению вероятностей выбора каждой отдельной буквы:
Сделайте рисунок и сразу увидите решение. В каждом из этих треугольников один угол прямой, так как высота - это перпендикуляр, а еще по одному равны как вертикальные. Следовательно, третий угол в них тоже равен. Эти треугольники подобны по равенству их трех углов. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. А прямоугольные треугольники подобны, если острый угол одного треугольника равен острому углу другого. Здесь острые углы - вертикальные и равны.
В задаче мы имеем дело с упорядоченной выборкой без повторений. Каждая буква выбирается последовательно, это значит, что буква К выбирается из четырех возможных (О Т К Р ) и вероятность выбора первой буквы К равна
Р(к) = 1/4.
Буква Р выбирается из оставшихся трех (О Т Р ) и вероятность выбора второй буквы Р равна Р(р) = 1/3.
Далее выбираем букву О из оставшихся двух (О Т) и вероятность выбора третьей буквы О равна Р(о) = 1/2.
Тогда для буквы Т останется вероятность выбора Р(т) = 1.
Таким образом, вероятность искомого события равна произведению вероятностей выбора каждой отдельной буквы:
Р = Р(к)*Р(р)*Р(о)*Р(т) = 1/4 * 1/3 * 1/2 * 1 = 1/24
ОТВЕТ: 1/24.
Сделайте рисунок и сразу увидите решение.
В каждом из этих треугольников один угол прямой, так как высота - это перпендикуляр, а еще по одному равны как вертикальные. Следовательно, третий угол в них тоже равен.
Эти треугольники подобны по равенству их трех углов.
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
А прямоугольные треугольники подобны, если острый угол одного треугольника равен острому углу другого. Здесь острые углы - вертикальные и равны.