MN – хорда окружности с центром в точке О, точка Р - середина МN. В этой окружности проведены радиус ОN и радиус ОК, который проходит через точку Р. ∠ KNP = 35°. Найти углы треугольника РNО.
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
В решении.
Объяснение:
Дана функция y=√x.
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
у=√х
1) А(0,04; 0,2)
0,2 = √0,04
0,2 = 0,2, проходит.
2) В(81; -9)
-9 = ±√81
-9 = -9, проходит.
3) С(54; 3√6)
3√6 = √54
3√6 = √9*6
3√6 = 3√6, проходит.
б) х∈ [0; 16]
y=√0 = 0;
y=√16 = 4;
При х∈ [0; 16] у∈ [0; 4].
в) у∈ [7; 13]
у = √х
7=√х х=7² х=49;
13=√х х=13² х=169.
При х∈ [49; 169] у∈ [7; 13].
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√7). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√7 = √а
(3√7)² = (√а)²
9*7 = а
а=63;
b) Если х∈[0; 11], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√11=√11;
При х∈ [0; 11] у∈ [0; √11].
с) y∈ [14; 25]. Найдите значение аргумента.
14 = √х
(14)² = (√х)²
х=196;
25 = √х
(25)² = (√х)²
х=625;
При х∈ [196; 625] y∈ [14; 25].
d) Найдите при каких х выполняется неравенство у ≤ 4.
√х <= 4
(√х)² <= (4)²
х <= 16;
Неравенство у ≤ 4 выполняется при х <= 16.