мне БЕЗ ПОСТРОЕНИЯ ГРАФИКОВ ВЫЧИСЛИТЬ А)ТОЧКИ ПЕРЕСЕЧЕНИЯ ФУНКЦИИ y=2x+6 С ОСЯМИ КООРДИНАТ В)ПЕРЕСЕКАЮТСЯ ЛИ ГРАФИКИ ФУНКЦИЙ y=2x+6 И y=4x C) ПРОХОДИТ ЛИ ГРАФИК ФУНКЦИИ ЧЕРЕЗ ТОЧКИ Н(4;14) И К(2;9)
Окружность около параллелограмма можно описать только тогда, когда этот параллелограмм - прямоугольник.
Стороны его попарно равны.
1)
Площадь этого параллелограмма равна произведению сторон. S=3*4=12
Площадь равновеликого квадрата а²=12
а=√12=2√3.
Р/√3=2
2)
Углы ВКА и КАD равны, как накрестлежащие, а углы ВАК и КАD равны по условию. Поэтому треугольник АВК - равнобедренный прямоугольный и его гипотенуза АК=3√2
АК/√2=(3√2)/√2=3
3)
Четырехугольник АКСD - прямоугольная трапеция с высотой=CD=3 и основаниями КС и АD.
Окружность около параллелограмма можно описать только тогда, когда этот параллелограмм - прямоугольник.
Стороны его попарно равны.
1)
Площадь этого параллелограмма равна произведению сторон. S=3*4=12
Площадь равновеликого квадрата а²=12
а=√12=2√3.
Р/√3=2
2)
Углы ВКА и КАD равны, как накрестлежащие, а углы ВАК и КАD равны по условию. Поэтому треугольник АВК - равнобедренный прямоугольный и его гипотенуза АК=3√2
АК/√2=(3√2)/√2=3
3)
Четырехугольник АКСD - прямоугольная трапеция с высотой=CD=3 и основаниями КС и АD.
КС=ВС-ВК=4-3=1
S (АКСD)=CD*(KC+AD):2
S (АКСD)=3*(1+4):2=7,5
Прямая,все точки которой находятся на равных расстояниях от точек A(4;2) и B(8;8), это перпендикуляр к середине отрезка АВ.
Уравнение АВ: (х - 4)/(8 - 4) =(у - 2)/(8 - 2).
(х - 4)/4 =(у - 2)/6) или (х - 4)/2 =(у - 2)/3.
Или в общем виде Ах + Ву + С = 0.
3х - 12 = 2у - 8,
3х - 2у - 4 = 0. Здесь А = 3, В = -2.
Перпендикулярная прямая имеет вид -Вх + Ау + С1 = 0.
Для определения коэффициента С1 надо подставить координаты точки, принадлежащей этой прямой.
Такая точка - середина АВ (точка Д).
Д = (1/2)(A(4;2) + B(8;8))/2 = (6; 5). Подставляем:
2*6 + 3*5 + С1 = 0,
С1 = -12 - 15 = -27.
ответ: уравнение прямой, все точки которой находятся на равных расстояниях от точек A(4;2) и B(8;8), это 2х + 3у - 27 = 0.