Если число кратное 24 ⇒оно делится на 24 , но для этого оно должно делиться и на 3 и на 8 ( т.е. сумма цифр должна делиться на 3 и число, составленное из последних трех цифр должно делиться на 8). Произведения цифр =16, отсюда следует , что в составе этих цифр не могут быть 0 (естественно) ,1,3,5,7,6,7,9. Множество цифр {1;2;4;8} ;16 =2*2*2*2 ; Можно все показать. Подумайте , интересно 1128 , ...1224, , 8112.
число делится на 4, если число составленное из последних двух цифр делится на 4) *04 , *08, *12 ,
1) y = -3x²+2x+5 = 16/3 -3(x -1/3)² . * * * * Парабола : вершина в точке G(1/3 ;16/3 ), ветви направлены вниз (-3<0 коэфф. x²) , проходит через точки A(1 ;0) и B(5/3;0) (точки пересечения графики функции с осью абсцисс_OX (они и есть корни уравнения -3x²+2x+5 = 0 ) а также через C(0;5)_точка пересечения графики функции с осью ординат_OY . 2) y =2x² +3x +5 =31/8 +2(x+3/4)² ; Парабола : вершина в точке G(-3/4 ;31/8 ) , ветви направлены вверх (2>0),проходит через точку C(0;5). не пересекает ось OX, т.к. уравнения 2x² +3x +5 = 0 не имеет действительных корней дискриминант уравнения_ D =3² -4*2*5 = -31 < 0.
Ординат вершины : 1)в первом случае максимальное значение функции ; 2)во втором случае минимальное значение.
Множество цифр {1;2;4;8} ;16 =2*2*2*2 ;
Можно все показать. Подумайте , интересно
1128 , ...1224, , 8112.
число делится на 4, если число составленное из последних двух цифр делится на 4)
*04 , *08, *12 ,
Парабола : вершина в точке G(1/3 ;16/3 ), ветви направлены вниз (-3<0 коэфф. x²) , проходит через точки A(1 ;0) и B(5/3;0) (точки пересечения графики функции с осью абсцисс_OX (они и есть корни уравнения -3x²+2x+5 = 0 ) а также через C(0;5)_точка пересечения графики функции с осью ординат_OY .
2) y =2x² +3x +5 =31/8 +2(x+3/4)² ;
Парабола : вершина в точке G(-3/4 ;31/8 ) , ветви направлены вверх (2>0),проходит через точку C(0;5). не пересекает ось OX, т.к. уравнения 2x² +3x +5 = 0 не имеет действительных корней дискриминант уравнения_ D =3² -4*2*5 = -31 < 0.
Ординат вершины :
1)в первом случае максимальное значение функции ;
2)во втором случае минимальное значение.