Сначала вырази синусы данных углов через синус углов из первой четверти: sin (–55°) = –sin 55°, потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) = =–sin 60°, sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°. И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус, то sin 35° < sin 55° < sin 60°. Но тогда –sin 35° > –sin 55° > –sin 60°, а поэтому sin 1295° > sin (–55°) > sin 600°. ответ:sin 600°, sin (–55°), 1295°
2)(y - 3)(1 + b)
3) (m - 3)(3n + 5m)
4) ( c - d)(7a - 2b)
5) ( x + y)( a^2 + b^3)
6) ( a^2 + 2b^2)(x +y)
7) a(b - c) + c( b - c) = ( b - c)(a + c)
8) 2b( x - y) + ( x - y) = ( x - y)( 2b + 1)
9) 6(a - 2) - a( a - 2)= ( a - 2)(6 - a)
10) a^2( m - 2) - b( m - 2) = ( m - 2)(a^2 - b)
11) x( x - y) - y(x - y) - 3( x - y) = ( x - y)(x - y - 3)
12) a( b - 3) - ( b - 3) + b( b - 3) = ( b - 3)(a - 1 + b)
13) 5( a - b)( a - b) + (a - b)(a+ b) = (a - b)(5(a - b) + a + b) =
( a - b)(5a - 5b + a + b) = ( a - b)(6a - 4b)= 2(3a - 2b)(a - b)
14) a^3( 2 + a) + a^2(2 + a)^2 = (2 + a)(a^3 + a^2(2 + a)) = ( 2 +a)(a^3 + 2a^2 + a^3) = (2 + a)(2a^3 + 2a^2) = 2a^2(a + 1)(a + 2)
sin (–55°) = –sin 55°,
потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) =
=–sin 60°,
sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°.
И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус,
то sin 35° < sin 55° < sin 60°.
Но тогда –sin 35° > –sin 55° > –sin 60°,
а поэтому sin 1295° > sin (–55°) > sin 600°.
ответ:sin 600°, sin (–55°), 1295°