В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
milekhina81
milekhina81
30.12.2022 01:17 •  Алгебра

(много ! ) дробь несократима. выяснить, сократима или несократима сумма двух дробей

Показать ответ
Ответ:
liq2354234
liq2354234
03.10.2020 18:52
Здесь опять есть нюанс, связанный с тем, что же все-таки мы считаем числителем и знаменателем новой дроби. Если мы новой дробью считаем дробь с числителем 2а+b и знаменателем a(a+b), то такая дробь несократима.

Предположим, противоположное, что 1/a+1/(a+b)=(2а+b)/(a(a+b)) сократима, т.е. 2а+b и a(a+b) делятся на некоторое простое число q.  Т.к. q - простое и произведение а(a+b) на него делится, то либо а, либо a+b делится на q.
1) Пусть a делится на q. В силу равенства b=(2a+b)-2a, получаем, что b тоже делится на q, а значит дробь a/b - сократима. Противоречие.
2) Если а+b делится на q, то в силу равенств
а=(2a+b)-(a+b) и b=2(a+b)-(2a+b), получаем, что а и b тоже делятся на q и дробь а/b сократима. Противоречие. Таким образом, дробь (2а+b)/(a(a+b)) несократима.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота