Первым делом нужно угадать хотя бы один корень (есть еще вариант для нахождения корней многочлена 3й степени с формулы, но она крайне громоздкая, вряд ли у Вас расчет на нее, если хотите, можете загуглить).
Например, есть теорема, что любой рациональный корень многочлена представим в виде дроби , где p - делитель и q - делитель . В данном случае , следовательно рациональными корнями могут быть только 1, -1, 2, -2, 4, -4.
Проверяем 1
1 + 3 - 4 = 0. Верно, значит 1 - корень
Вообще, можно и так глядя на многочлен, заметить, что 1 - корень
Теперь делим многочлен на (x - 1) (это по теореме Бизу). С процесс деления показать не могу, но должно получиться x^3 + 3x^2 - 4 = (x-1)(x^2 + 4x + 4)
Многочлен (x^2 + 4x + 4) = (x+2)^2, т.к. это квадрат суммы.
если x1 больший корень а x2 меньший то x1=5x2
по теореме Виета
x1x2=c/a
x1+x2=-b/a
тогда решаем системой
5x2*x2=(49a^2-7a)/1
5x2+x2=(-(-(14a-1))/1 ⇒
5x2^2=49a^2-7a
6x2=14a-1 ⇒ x2=(14a-1)/6
5((14a-1)/6)^2=49a^2-7a
5((196a^2-28a+1)/36)=49a^2-7a
5(196a^2-28a+1)=36(49a^2-7a)
980a^2-140a+5=1764a^2-252a
784a^2-112a-5=0
D=(-112)^2-4*784*(-5)=12544+15680=28224=168^2
a1=(-(-112)-168)/(2*784)=(112-168)/1568=-56/1568=-1/28
a2=(-(-112)+168)/(2*784)=(112+168)/1568=280/1568=5/28
x^3 + 3x^2 - 4
В разложении на скобки стоят корни многочлена.
Первым делом нужно угадать хотя бы один корень (есть еще вариант для нахождения корней многочлена 3й степени с формулы, но она крайне громоздкая, вряд ли у Вас расчет на нее, если хотите, можете загуглить).
Например, есть теорема, что любой рациональный корень многочлена представим в виде дроби , где p - делитель и q - делитель . В данном случае , следовательно рациональными корнями могут быть только 1, -1, 2, -2, 4, -4.
Проверяем 1
1 + 3 - 4 = 0. Верно, значит 1 - корень
Вообще, можно и так глядя на многочлен, заметить, что 1 - корень
Теперь делим многочлен на (x - 1) (это по теореме Бизу). С процесс деления показать не могу, но должно получиться x^3 + 3x^2 - 4 = (x-1)(x^2 + 4x + 4)
Многочлен (x^2 + 4x + 4) = (x+2)^2, т.к. это квадрат суммы.
Получаем x^3 + 3x^2 - 4 = (x-1)(x^2 +4x +4) = (x-1)(x+2)^2
Надеюсь