Заметим, что так как 2020 - четное число, то (число в четной степени всегда ). Поэтому первый множитель на знак левой части влиять не будет и его можно опустить. При этом стоит учесть, так это то, что если , то имеем : , а это верно. Поэтому нужно запомнить , что x = 4 - решение.
Если , то первый множитель положителен и на него можно поделить обе части, сохранив знак. Итого:
Решение неравенства - x = 4 и все . Наименьшие целые решения - 4, 5 и 6. Их произведение равно 120.
ОТВЕТ: 1) 120.
4. Область определения - все числа, которые можно подставить вместо x.
Под каждым из корней должно быть неотрицательное число, а знаменатель дроби должен быть отличен от 0. Область определения - все числа, удовлетворяющие системе из четырех неравенств .
Из первого неравенства следует, что .
Решим второе неравенство: оно равносильно неравенству . Решением данного неравенство является отрезок [-2; 3].
Третье неравенство: .
Четвертое:
Так как у нас была система, ищем пересечение множеств решений всех 4 неравенств:
Все целые числа, принадлежащие области определения: -3; -2; 1; 2 (-1 и 0 выпадают, т.к. скобки круглые). Их сумма равна -2.
Основания трапеции не могут иметь одинаковую длину, так как в противном случае это будет параллелограмм. Значит, одно из оснований BC и две боковые стороны AB и CD равны по а. Заметим, что рассматриваемая трапеция равнобедренная.
Проведем высоты BH и CK. Тогда, HK=а.
Обозначим AH=KD=х.
Высоту трапеции найдем по теореме Пифагора:
Запишем выражение для площади трапеции:
Исследуем на экстремумы функцию S. Найдем производную:
Найдем нули производной:
При переходе через точку производная меняет знак с минуса на плюс, значит это точка минимума.
При переходе через точку производная меняет знак с плюса на минус, значит это точка максимума.
Таким образом, наибольшую площадь трапеция имеет при . Эта площадь равна:
3.
Заметим, что так как 2020 - четное число, то (число в четной степени всегда ). Поэтому первый множитель на знак левой части влиять не будет и его можно опустить. При этом стоит учесть, так это то, что если , то имеем : , а это верно. Поэтому нужно запомнить , что x = 4 - решение.
Если , то первый множитель положителен и на него можно поделить обе части, сохранив знак. Итого:
Решение неравенства - x = 4 и все . Наименьшие целые решения - 4, 5 и 6. Их произведение равно 120.
ОТВЕТ: 1) 120.
4. Область определения - все числа, которые можно подставить вместо x.
Под каждым из корней должно быть неотрицательное число, а знаменатель дроби должен быть отличен от 0. Область определения - все числа, удовлетворяющие системе из четырех неравенств .
Из первого неравенства следует, что .
Решим второе неравенство: оно равносильно неравенству . Решением данного неравенство является отрезок [-2; 3].
Третье неравенство: .
Четвертое:
Так как у нас была система, ищем пересечение множеств решений всех 4 неравенств:
Все целые числа, принадлежащие области определения: -3; -2; 1; 2 (-1 и 0 выпадают, т.к. скобки круглые). Их сумма равна -2.
ОТВЕТ: 2) -2
Рассмотрим трапецию ABCD.
Основания трапеции не могут иметь одинаковую длину, так как в противном случае это будет параллелограмм. Значит, одно из оснований BC и две боковые стороны AB и CD равны по а. Заметим, что рассматриваемая трапеция равнобедренная.
Проведем высоты BH и CK. Тогда, HK=а.
Обозначим AH=KD=х.
Высоту трапеции найдем по теореме Пифагора:
Запишем выражение для площади трапеции:
Исследуем на экстремумы функцию S. Найдем производную:
Найдем нули производной:
При переходе через точку производная меняет знак с минуса на плюс, значит это точка минимума.
При переходе через точку производная меняет знак с плюса на минус, значит это точка максимума.
Таким образом, наибольшую площадь трапеция имеет при . Эта площадь равна:
ответ: