Итак, имеем функцию с двумя модулями. Под модулями стоят выражения вида g(x)=x-a
На промежутке (a; +∞), g(x) > 0
На промежутке (-∞; a), g(x) < 0
При x=a, g(x) = 0
Этот анализ понять, что наш график будет иметь три состояния, когда оба модуля раскрываются со знаком +, когда оба модуля раскрываются со знаком -, и когда они раскроются с разными знаками
Рассмотрим случай, когда -1 > x. Оба подмодульных выражения примут отрицательные значения. Модули раскроются со знаком минус. y = -(x-4) - (x+1) = -2x + 3Рассмотрим случай, когда -1 <= x < 4. Тогда первый модуль откроется со знаком -, а второй со знаком плюс. y = -(x-4) + x + 1 = 5Рассмотрим случай, когда 4 <= x. Тогда оба модуля откроются со знаком плюс. y = x - 4 + x + 1 = 2x - 3
Имеем 3 промежутка, на каждом из которых своя прямая. Такой график иногда называют "корыто". Две боковые прямые образуют "стенки", а "дно" образовано горизонтальной линией.
Осталось построить вышеперечисленные 3 функции, но учитывая их промежуток. График приложен.
Наша функция содержит знак модуля. Следовательно, необходимо рассмотреть две ситуации: 1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз, вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх. Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный. 2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх, вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.
Объяснение:
y = |x-4| + |x+1|
Итак, имеем функцию с двумя модулями. Под модулями стоят выражения вида g(x)=x-a
На промежутке (a; +∞), g(x) > 0
На промежутке (-∞; a), g(x) < 0
При x=a, g(x) = 0
Этот анализ понять, что наш график будет иметь три состояния, когда оба модуля раскрываются со знаком +, когда оба модуля раскрываются со знаком -, и когда они раскроются с разными знаками
Рассмотрим случай, когда -1 > x. Оба подмодульных выражения примут отрицательные значения. Модули раскроются со знаком минус. y = -(x-4) - (x+1) = -2x + 3Рассмотрим случай, когда -1 <= x < 4. Тогда первый модуль откроется со знаком -, а второй со знаком плюс. y = -(x-4) + x + 1 = 5Рассмотрим случай, когда 4 <= x. Тогда оба модуля откроются со знаком плюс. y = x - 4 + x + 1 = 2x - 3Имеем 3 промежутка, на каждом из которых своя прямая. Такой график иногда называют "корыто". Две боковые прямые образуют "стенки", а "дно" образовано горизонтальной линией.
Осталось построить вышеперечисленные 3 функции, но учитывая их промежуток. График приложен.
1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз,
вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх.
Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный.
2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх,
вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.