Воспользуемся тем что куб числа по модулю (остатки от деления) сравнимы с соответственно когда , где . По тому же принципу справа так же как , дает остаток , число , то есть остаток числа равен при делений на . рассмотрим случаи , когда слева остаток всегда равен , но справа уже не может поэтому рассмотрим случаи когда , слева остаток при делений на как ранее был сказан равен , но тогда справа должно быть число дающее , а оно дает при делений на остаток отсюда подходит
Далее можно проделать такую же операцию с , но оно так же не действительно , то есть решение
По тому же принципу справа так же как
, дает остаток , число , то есть остаток числа равен при делений на .
рассмотрим случаи , когда слева остаток всегда равен , но справа уже не может поэтому
рассмотрим случаи когда , слева остаток при делений на как ранее был сказан равен , но тогда справа должно быть число дающее , а оно дает при делений на остаток отсюда подходит
Далее можно проделать такую же операцию с , но оно так же не действительно , то есть решение
Объяснение:
а) 9x-3y=6;
Выражаем у через х и получаем линейную функцию:
3у=9х-6;
у=(9х-6)/3=3х-2;
у=3х-2.
Графиком линейной функции является прямая, прямую можно построить по двум точкам, например:
х у
0 -2
2 4
См. рисунок а).
б) y=-4x+2;
График линейной функции - прямая, строим ее по двум точкам, например:
х у
0 2
1 -2
См. рисунок б).
в) y=⅓x;
График прямой пропорциональности - это прямая, которая проходит через начало координат точку О(0;0).
Строим по двум точкам, например:
х у
0 0
3 1
См. рисунок в).
г) y=-x;
График прямой пропорциональности - прямая, которая проходит через начало координат точку О(0;0).
Строим по двум точкам, например:
х у
0 0
2 -2
См. рисунок г).
д) y=-5;
Графиком является прямая, которая проходит через точку (0;-5) и параллельно оси абсцисс (ОХ).
См. рисунок д).
e) x=4;
Графиком является прямая, которая проходит через точку (4;0) и параллельно оси ординат (ОY).
Подробнее - на -