3 sinx + cos x/ sin x + 2 cos x = 7 /5; ⇒ 5*(3sin x + cos x) = 7*(sin x + 2 cos x); 15 sin x + 5 cos x = 7 sin x + 14 cos x; 8 sin x = 9 cos x; tg x = 9/8;
1)3 sin^2 x - 2 sin x cos x + 1 = 3 sin^2 x - 2 sin x cos x + sin^2 x + cos^2 x = 4 sin^2 x - 2 sin x cos x + cos ^2 x. 2) 2 cos^2 x + sin x cos x + 3 = 2 cos^2 x +sin x cos x + +3sin^2 x + 3cos^2 x = 3sin^2 x + sinx cosx + 5cos ^2 x.
АВСД - параллелограмм , ДР - биссектриса, ∠С=45° ,
ДР пересекает АВ в точке Р , а ВС в точке М .
АР=10 см , ВР=2 см ⇒ АВ=10-2=8 см , СД=АВ=8 см как противоположные стороны параллелограмма .
ДР - биссектриса ⇒ ∠СДР=∠АДР .
∠АДР=∠СМД как накрест лежащие углы при АД || ВС и секущей ДР .
В ΔСМД два угла равны ⇒ ΔСМД - равнобедренный и СМ=СД=8 см ∠СМД=(180°-45°):2=67,5°
∠ВМР=∠СМД=67,5° как вертикальные .
В ΔВМР угол ∠МВР=45° , так как ∠МВР=∠МСД=45° как накрест лежащие углы при АР || СД и секущей ВС .
Но тогда в ΔВМР: ∠ВРМ=180°-45°-67,5°=67,5° , то есть ΔВМР есть два равных угла: ∠ВМР=∠ВРМ=67,5° , тогда этот треугольник равнобедрен-ный и ВМ=ВР=2 см .
5*(3sin x + cos x) = 7*(sin x + 2 cos x);
15 sin x + 5 cos x = 7 sin x + 14 cos x;
8 sin x = 9 cos x;
tg x = 9/8;
1)3 sin^2 x - 2 sin x cos x + 1 = 3 sin^2 x - 2 sin x cos x + sin^2 x + cos^2 x = 4 sin^2 x - 2 sin x cos x + cos ^2 x.
2) 2 cos^2 x + sin x cos x + 3 = 2 cos^2 x +sin x cos x + +3sin^2 x + 3cos^2 x = 3sin^2 x + sinx cosx + 5cos ^2 x.
(4sin^2 x-2sinxcosx +cos^2 x)/(3sin^2 x+sinxcosx+5cos^ x) =(4tg^2 x - 2 tg x + 1) / (3 tg^2 x + tg x + 5) =
= (4*(9/8)^2 - 2*(9/8) + 1) /(3*(9/8)^2 + 9/8 + 5)=
= (81/16 - 9/4 + 1) / (243 /64 + 9/8 +5) =
=(225/16) / (635/64) =(225/16) * (64/625) = 36/25.
ответ. Р=36 см .
АВСД - параллелограмм , ДР - биссектриса, ∠С=45° ,
ДР пересекает АВ в точке Р , а ВС в точке М .
АР=10 см , ВР=2 см ⇒ АВ=10-2=8 см , СД=АВ=8 см как противоположные стороны параллелограмма .
ДР - биссектриса ⇒ ∠СДР=∠АДР .
∠АДР=∠СМД как накрест лежащие углы при АД || ВС и секущей ДР .
В ΔСМД два угла равны ⇒ ΔСМД - равнобедренный и СМ=СД=8 см ∠СМД=(180°-45°):2=67,5°
∠ВМР=∠СМД=67,5° как вертикальные .
В ΔВМР угол ∠МВР=45° , так как ∠МВР=∠МСД=45° как накрест лежащие углы при АР || СД и секущей ВС .
Но тогда в ΔВМР: ∠ВРМ=180°-45°-67,5°=67,5° , то есть ΔВМР есть два равных угла: ∠ВМР=∠ВРМ=67,5° , тогда этот треугольник равнобедрен-ный и ВМ=ВР=2 см .
Тогда ВС=СМ+ВМ=8 +2 =10 см , АД=ВС=10 см
Периметр Р=10+10+8+8=36 см .