8 журналов.
5 в переплёте, и (8-5) = 3 простых (без переплёта).
p = m/n.
Взяты 4 журнала, то есть всего вариантов:
n = количеству сочетаний из 8 по 4 = C₈⁴,
среди взятых четырёх окажется не менее трёх в переплёте, это значит либо 3 в переплёте, либо 4 в переплёте. То есть
m = m₃ + m₄,
m₃ - это количество вариантов, при которых из 4 взятых журналов 3 в переплёте и один не в переплёте,
m₄ - это количество вариантов, при которых из 4 взятых журналов все 4 в переплёте.
m = m₃+m₄ = 2·5·3 + 5 = 30+5 = 35 = 7·5,
p = m/n = (7·5)/(5·2·7) = 1/2 = 0,5.
ответ. 0,5.
Замечание.
Количество сочетаний из n по m =
n! - это факториал,
n! = 1·2·...·n
8 журналов.
5 в переплёте, и (8-5) = 3 простых (без переплёта).
p = m/n.
Взяты 4 журнала, то есть всего вариантов:
n = количеству сочетаний из 8 по 4 = C₈⁴,
среди взятых четырёх окажется не менее трёх в переплёте, это значит либо 3 в переплёте, либо 4 в переплёте. То есть
m = m₃ + m₄,
m₃ - это количество вариантов, при которых из 4 взятых журналов 3 в переплёте и один не в переплёте,
m₄ - это количество вариантов, при которых из 4 взятых журналов все 4 в переплёте.
m = m₃+m₄ = 2·5·3 + 5 = 30+5 = 35 = 7·5,
p = m/n = (7·5)/(5·2·7) = 1/2 = 0,5.
ответ. 0,5.
Замечание.
Количество сочетаний из n по m =
n! - это факториал,
n! = 1·2·...·n