радиусы вписанной окружности, проведенные в точки касания, будут _|_ сторонам треугольника,
два радиуса, проведенные к катетам, вырезают из треугольника квадрат со стороной, равной радиусу (r),
оставшиеся части катетов равны, соответственно, a-r и b-r
центр вписанной окружности ---это точка пересечения биссектрис треугольника,
часть биссектрисы, соединяющая центр вписанной окружности и вершину треугольника будет общей гипотенузой двух равных прямоугольных треугольников с катетом = r
если рассмотреть две пары таких равных прямоугольных треугольников, то можно заметить, что c = (a-r) + (b-r)
Диагонали параллелограмма в точке пересечения делятся пополам,значит точка пересечения является серединой отрезков АС и BD Найдем координаты точки D(x;y;z) исходя из формулы нахождения координат середины отрезка^ (xA+xC)/2=(xB+xD)/2;(yA+yC)/2=(yB+yD)/2;(zA+zC)/2=(zB+zD)/2 (3+3)/2=(1+х)/2⇒1+x=6⇒x=5 (4+7)/2=(2+y)/2⇒2+y=11⇒y=9 (-1-2)/2=(4+z)/2⇒4+z=-3⇒z=-7 D(5;9;-7) Уравнение прямой ,проходящей через 2 точки (x-x1)/(x2-x1)=(y-y1)/(y2-y1)=(z-z1)/(z2-z1) Уравнение АВ (x-3)/(1-3)=(y-4)/(2-4)=(z+1)/(4+1) (x-3)/(-2)=(y-4)/(-2)=(z+1)/5 Уравнение ВС (x-1)/(3-1)=(y-2)/(7-2)=(z-4)/(-2-4) (x-1)/2=(y-2)/5=(z-4)/(-6) Уравнение CD (x-3)/(5-3)=(y-7)/(9-7)=(z+2)/(-7+2) (x-3)/2=(y-7)/2=(z+2)/(-5) Уравнение AD (x-3)/(5-3)=(y-4)/(9-4)=(z+1)/(-7+1) (x-3)/2=(y-4)/5=(z+1)/(-5)
радиусы вписанной окружности, проведенные в точки касания, будут _|_ сторонам треугольника,
два радиуса, проведенные к катетам, вырезают из треугольника квадрат со стороной, равной радиусу (r),
оставшиеся части катетов равны, соответственно, a-r и b-r
центр вписанной окружности ---это точка пересечения биссектрис треугольника,
часть биссектрисы, соединяющая центр вписанной окружности и вершину треугольника будет общей гипотенузой двух равных прямоугольных треугольников с катетом = r
если рассмотреть две пары таких равных прямоугольных треугольников, то можно заметить, что c = (a-r) + (b-r)
отсюда c = a + b - 2r
2r = a+b-c
r = (a+b-c)/2
Найдем координаты точки D(x;y;z) исходя из формулы нахождения координат середины отрезка^
(xA+xC)/2=(xB+xD)/2;(yA+yC)/2=(yB+yD)/2;(zA+zC)/2=(zB+zD)/2
(3+3)/2=(1+х)/2⇒1+x=6⇒x=5
(4+7)/2=(2+y)/2⇒2+y=11⇒y=9
(-1-2)/2=(4+z)/2⇒4+z=-3⇒z=-7
D(5;9;-7)
Уравнение прямой ,проходящей через 2 точки
(x-x1)/(x2-x1)=(y-y1)/(y2-y1)=(z-z1)/(z2-z1)
Уравнение АВ
(x-3)/(1-3)=(y-4)/(2-4)=(z+1)/(4+1)
(x-3)/(-2)=(y-4)/(-2)=(z+1)/5
Уравнение ВС
(x-1)/(3-1)=(y-2)/(7-2)=(z-4)/(-2-4)
(x-1)/2=(y-2)/5=(z-4)/(-6)
Уравнение CD
(x-3)/(5-3)=(y-7)/(9-7)=(z+2)/(-7+2)
(x-3)/2=(y-7)/2=(z+2)/(-5)
Уравнение AD
(x-3)/(5-3)=(y-4)/(9-4)=(z+1)/(-7+1)
(x-3)/2=(y-4)/5=(z+1)/(-5)