В решении.
Объяснение:
Один из корней данного квадратного уравнения равен -3. Найдите коэффициент k и второй корень уравнения x²-5x+k=0.
Уравнение вида: х² + рх + q.
По теореме Виета:
х₁ + х₂ = -р
х₁ * х₂ = q
Согласно теореме система уравнений:
х - 3 = 5
х * (-3) = k
Вычислить значение х в первом уравнении, подставить во второе и вычислить k:
х = 5 + 3
х = 8 (второй корень уравнения).
8 * (-3) = - 24 - значение k.
Уравнение имеет вид:
х² - 5х - 24 = 0
Проверка:
D=b²-4ac = 25 + 96 = 121 √D=11
х₁=(-b-√D)/2a
х₁=(5-11)/2 = -6/2 = -3, верно.
х₂=(-b+√D)/2a
х₂=(5+11)/2 = 16/2 = 8, верно.
В решении.
Объяснение:
Один из корней данного квадратного уравнения равен -3. Найдите коэффициент k и второй корень уравнения x²-5x+k=0.
Уравнение вида: х² + рх + q.
По теореме Виета:
х₁ + х₂ = -р
х₁ * х₂ = q
Согласно теореме система уравнений:
х - 3 = 5
х * (-3) = k
Вычислить значение х в первом уравнении, подставить во второе и вычислить k:
х = 5 + 3
х = 8 (второй корень уравнения).
8 * (-3) = - 24 - значение k.
Уравнение имеет вид:
х² - 5х - 24 = 0
Проверка:
D=b²-4ac = 25 + 96 = 121 √D=11
х₁=(-b-√D)/2a
х₁=(5-11)/2 = -6/2 = -3, верно.
х₂=(-b+√D)/2a
х₂=(5+11)/2 = 16/2 = 8, верно.
(Х + 1) (x - 1) / (Х - 2)(x - 1) = (x² - 1) / (Х - 2)(x - 1) = (x² - 1) / (x² - 3x + 2)
2) (Х - 3) (x - 3)/ (Х + 3)(x - 3) = (x - 3)² / (x² - 9)
Х*(x + 3) / (Х - 3)(x + 3) = x*(x + 3) / (x² - 9)
3) (3 + Х)(x - 3) / (Х - 5)(x - 3) = (x² - 9) / (Х - 5)(x - 3) = (x² - 9) / (x² - 8x + 15)
Х*(x - 5) / (Х - 3)(x - 5) = Х*(x - 5) / (x² - 8x + 15)
4) (Х + 1)(x + 2) /x*(x² - 4) = (x² + 3x + 2) /x*(x² - 4)
x (4 + Х) / x( x² - 4)