На приемных экзаменах 45 студентов получили следующие 39 41 40 42 41 40 42 44 40 43 42 41 43 42 39 41 42 39 41 37 43 41 38 43 42 41 39 40 41 38 44 40 41 40 42 40 41 42 40 43 38 39 41 41 42. а) Постройте таблицу закона распределения случайной величины Х; б) Найдите размах выборки; в) Найдите моду и медиану выборки; г) Вычислите математическое ожидание; д) Вычислите дисперсию; е) Вычислите среднее квадратическое отклонение
С полным решением
Объяснение:
16. 4/11 ÷(-16/33)+5 3/4=4/11 ·(-33/16)+5 3/4=-3/4 +5 3/4=5
17. (4 3/8 -11/5) ÷3/10=(4 15/40 -2 8/40)·10/3=2 7/40 ·10/3=87/40 ·10/3=29/4=7 1/4=7,25
18. (11/12 +11/20)·15/8=(55/60 +33/60)·15/8=88/60 ·15/8=11/4=2 3/4=2,75
19. (3,1+3,4)·3,8=6,5·3,8=13/2 ·19/5=247/10=24,7
20. 2,7/(1,4+0,1)=27/15=9/5=1,8
21. 8,5·2,6-1,7=17/2 ·13/5 -1,7=221/10 -1,7=22,1-1,7=20,4
22. 9,4/(4,1+5,3)=94/94=1
23. 3,8/(2,6+1,2)=38/38=1
24. 18/4 ·14/3 ÷4/5=9/2 ·14/3 ·5/4=3·7·5/4=(21·5)/4=105/4=26 1/4=26,25
25. (432²-568²)÷1000=((432-568)(432+568))/1000=(-136+1000)/1000=864/1000=0,864
Замечаем, что при х=1
1+1-4-2+4=0
0=0 - верно, значит х=1 является корнем уравнения и можно разложить левую часть на множители, один из которых уже известен - это (х-1).
x⁴+x³-4x²-2x+4=(x-1)(x³+ax²+bx+c)
Наша задача найти коэффициенты а,b и с.
Раскроем скобки справа
x⁴+x³-4x²-2x+4=x⁴+ax³+bx²+cx-x³-ax²-bx-c;
x⁴+x³-4x²-2x+4=x⁴+(a-1)x³+(b-a)x²+(c-b)x-c;
Два многочлена равны, если степени этих многочленов одинаковые, и коэффициенты при соответствующих степенях равны.
a-1=1 ⇒ a=2
b-a=-4 ⇒ b=a-4=2-4=-2
c-b=-2 ⇒ c=b-2=-2-2=-4
-c=4 ⇒ c=-4
Поэтому
x⁴+x³-4x²-2x+4=(x-1)(x³+2x²-2x-4)
Уравнение принимает вид:
(x-1)(x³+2x²-2x-4)=0
х-1=0 или x³+2x²-2x-4=0
х=1 х²(х+2)-2(х+2)=0
(х+2)(х²-2)=0
х+2=0 или х²-2=0
х=-2 х=-√2; х=√2
О т в е т. -2; -√2; 1; √2 - корни уравнения
Можно было получить многочлен х³+ax²+bx+c поделив многочлен
на двучлен (х-1) " углом"
_x⁴ + x³ - 4x² - 2x + 4 |x-1
x⁴ - x³ x³+2x²-2x-4
_2x³ - 4x² - 2x + 4
2x³ -2x²
_-2x² - 2x + 4
-2x² + 2x
_- 4x + 4
- 4x + 4
0