Для начала вспомним что такое D(f) и E(f)
1 ) Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f)
Т.е. Это все допустимые значения которые может принимать "х"
2) Множество всех значений, которые может принять зависимая переменная, называется областью значения функции и обозначается E (f)
Т.е. это все допустимые значений которые может принимать "у" в зависимости от "х"
Теперь рассмотрим нашу функцию
f(x)=x²+1
Есть ли такие "х" которые нельзя было бы подставить в нашу функцию и найти значение переменной "у"? - НЕТ
так что х∈(-∞;+∞)
теперь рассмотрим у
при х=0; у=0+1=1
при х=1; у=1+1=2
при х= -1; у=(-1)²+1=1+1=2
Значит все возможные значения у∈[1;+∞)
теперь поставим знаки
1) 3 ∈ D (f)
2) 0 ∈ D (f)
3) 1/2 ∉ E (f)
4) 1.01 ∈ E (f)
Объяснение:
16,8 км/ч; 14 км/ч.
Обозначим скорость лодки в стоячей воде V км/ч, а скорость теч. v км/ч.
Тогда скорость лодки по течению будет (V+v) км/ч.
А скорость лодки против течения будет (V-v) км/ч.
Составляем систему:
{ 1,5*(V+v) + 2(V-v) = 26,6 км
{ 3(V-v) = 2,5(V+v)
Раскрываем скобки и умножим 1 уравнение на 10, а 2 уравнение на 2:
{ 15V + 15v + 20V - 20v = 266
{ 6V - 6v = 5V + 5v
Приводим подобные:
{ 35V - 5v = 266
{ V = 11v
Подставляем 2 уравнение в 1 уравнение:
35*11v - 5v = 266
380v = 266
v = 266/380 = (2*7*19)/(2*5*19) = 7/5 = 1,4 км/ч - скорость течения реки.
V = 11v = 11*1,4 = 15,4 км/ч - скорость лодки в стоячей воде.
V + v = 15,4 + 1,4 = 16,8 км/ч - скорость лодки по течению.
V - v = 15,4 - 1,4 = 14 км/ч - скорость лодки против течения.
Для начала вспомним что такое D(f) и E(f)
1 ) Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f)
Т.е. Это все допустимые значения которые может принимать "х"
2) Множество всех значений, которые может принять зависимая переменная, называется областью значения функции и обозначается E (f)
Т.е. это все допустимые значений которые может принимать "у" в зависимости от "х"
Теперь рассмотрим нашу функцию
f(x)=x²+1
Есть ли такие "х" которые нельзя было бы подставить в нашу функцию и найти значение переменной "у"? - НЕТ
так что х∈(-∞;+∞)
теперь рассмотрим у
при х=0; у=0+1=1
при х=1; у=1+1=2
при х= -1; у=(-1)²+1=1+1=2
Значит все возможные значения у∈[1;+∞)
теперь поставим знаки
1) 3 ∈ D (f)
2) 0 ∈ D (f)
3) 1/2 ∉ E (f)
4) 1.01 ∈ E (f)
Объяснение:
16,8 км/ч; 14 км/ч.
Объяснение:
Обозначим скорость лодки в стоячей воде V км/ч, а скорость теч. v км/ч.
Тогда скорость лодки по течению будет (V+v) км/ч.
А скорость лодки против течения будет (V-v) км/ч.
Составляем систему:
{ 1,5*(V+v) + 2(V-v) = 26,6 км
{ 3(V-v) = 2,5(V+v)
Раскрываем скобки и умножим 1 уравнение на 10, а 2 уравнение на 2:
{ 15V + 15v + 20V - 20v = 266
{ 6V - 6v = 5V + 5v
Приводим подобные:
{ 35V - 5v = 266
{ V = 11v
Подставляем 2 уравнение в 1 уравнение:
35*11v - 5v = 266
380v = 266
v = 266/380 = (2*7*19)/(2*5*19) = 7/5 = 1,4 км/ч - скорость течения реки.
V = 11v = 11*1,4 = 15,4 км/ч - скорость лодки в стоячей воде.
V + v = 15,4 + 1,4 = 16,8 км/ч - скорость лодки по течению.
V - v = 15,4 - 1,4 = 14 км/ч - скорость лодки против течения.