Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
lear8765
05.08.2021 14:37 •
Алгебра
На рисунке OA = OC, OB = OD, ∠АВС = 37°, ∠ВОС = 44°. Найдите ∠OAD. ответ дайте в градусах.
Показать ответ
Ответ:
VlEllen
03.12.2021 20:52
F(x) = cos5x · cos(x + π/6)
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z
0,0
(0 оценок)
Ответ:
Georgiy11111
03.12.2021 20:52
F(x) = cos5x · cos(x + π/6)
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z
0,0
(0 оценок)
Популярные вопросы: Алгебра
Gandondddddd
15.09.2022 16:29
очень нужно. Заранее благодарю!r) log3x - 3log3x + 2=0...
Ал923к
29.02.2020 18:27
Найти решение неопределённых интегралов ...
figakuvesi
13.05.2022 14:51
Записать уравнение касательной к графику функции y=f(x) в сточке с абсциссой X0...
Sofiamarfiya
01.02.2023 01:04
По двум улицам движутся к перекрестку две машины с постоянными скоростями 40 и 50 км/ч. Улицы пересекаются под углом 60 градусов. В начальный момент времени машины находятся...
мия68
07.03.2023 14:25
алгебра 10 клас Номер 6.14...
МихаилКузмичёв
31.10.2021 01:59
Вычислить : 2cos^2 п/8 - 1 / 1+8sin^2п/8cos^2п/8...
qwerty06151
11.05.2021 02:31
Найдите наименьший положительный период функции а) f(x)=sin(π / 2+π / 6) б) f(x)=ctg 3x...
nastya09042
11.05.2021 02:31
Составьте уравнение прямой, проходящей через точки а (1; 8) и в(-2; -1)...
glory0211
29.05.2021 08:38
Мне не понятна тема относительные частоты...
CwetochekAnfisa
29.05.2021 08:38
Найти значения выражения 1) 5 в 21 степени * 5 в -23 степени...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z