В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Zadrot233
Zadrot233
05.05.2023 13:54 •  Алгебра

На рисунку зображено грфік залежності швидкості руху велосепедиста від часу. Побудуйте графік залежності шляху, який подолав велосепедист, від часу.


На рисунку зображено грфік залежності швидкості руху велосепедиста від часу. Побудуйте графік залежн

Показать ответ
Ответ:
obshaga2311
obshaga2311
07.02.2021 20:14

Поскольку, любое уравнение можно поделить на его старший коэффициент, то будем считать, для удобства, что мы рассматриваем два приведенных кубических уравнения с рациональными коэффициентами.

x^3+ax^2+bx+c = 0\\x^3+mx^2+nx+k=0, a,b,c,m,n,k - рациональные числа.

Поскольку, данные уравнения имеют общий корень, то уравнение, являющееся их разностью, тоже содержит этот корень:

(m-a)x^2+(n-b)x+(k-c) = 0 , поскольку коэффициенты уравнений непропорциональны, то все коэффициенты полученного квадратного уравнения ненулевые.

А значит, данный общий иррациональный корень принимает вид : p+-\sqrt{q} , где p,q - рациональные числа, при этом q0 не полный квадрат, отсюда в частности q\neq 0.

Попробуем показать, что если  p+\sqrt{q} корень уравнения

x^3+ax^2+bx+c = 0 , то и p-\sqrt{q} корень данного уравнения , и наоборот. Сделаем некоторое упрощение.

Если число  p+-\sqrt{q}  является корнем данного уравнения , то сделаем замену:  x-p=t , тогда после раскрытия скобок данное уравнение так же будет с рациональными коэффициентами и будет иметь корень  t=+-\sqrt{q}  

Такое уравнение примет вид :

f(t)=t^3+ut^2+vt+g=0 , u,v,g - рациональные числа.

Учитывая, что f(\sqrt{q} ) = 0

q\sqrt{q} +uq+v\sqrt{q} +g=0\\\sqrt{q} (q+v) = -g-uq

Предположим, что q+v\neq 0 , но тогда , учитывая, что q - не полный квадрат, то левая часть равенства иррациональна, а правая  рациональна, что невозможно. То есть мы пришли к противоречию, а значит : q+v=g+uq=0

Таким образом:

f(-\sqrt{q} ) =-q\sqrt{q} +uq -v\sqrt{q}+g = g+uq -\sqrt{q}(q+v) = 0

Аналогично, доказывается, что если -\sqrt[]{q} корень данного уравнения, то и \sqrt{q} корень этого уравнения.

Таким образом, мы доказали, что если  p+\sqrt{q} корень уравнения

x^3+ax^2+bx+c = 0 , то и p-\sqrt{q} корень данного уравнения и наоборот.  Аналогично доказывается этот факт и для уравнения:

x^3+mx^2+nx+k=0 .

А значит, данные кубические многочлены имеют еще один общий иррациональный корень.

Что и требовалось доказать.

0,0(0 оценок)
Ответ:
аореакенгшлгн
аореакенгшлгн
07.02.2021 20:14

1)

ОДЗ:   x^2-x-6\geq0   ⇒      (x+2)(x-3)\geq 0   ⇒  x \in (-\infty; -2] \cup [3;+\infty)

(2^{x}-2)\cdot \sqrt{x^2-x-6} \geq 0      ⇔

(2^{x}-2)\cdot \sqrt{x^2-x-6} =0    или   (2^{x}-2)\cdot \sqrt{x^2-x-6} 0

(2^{x}-2)\cdot \sqrt{x^2-x-6} =0      ⇒     2^{x}-2=0   или   \sqrt{x^2-x-6} =0   ⇒

x=1   или    x=-2     или    x=3

x=1       не входит в ОДЗ

два корня    x=-2     или    x=3

(2^{x}-2)\cdot \sqrt{x^2-x-6} 0     при    x \in (-\infty; -2] \cup [3;+\infty)

\sqrt{x^2-x-6} 0,   тогда     2^{x}-20  ⇒     2^{x}2   ⇒     x 1

C учетом x \in (-\infty; -2] \cup [3;+\infty)  получаем ответ:  

\{-2\} \cup [3;+\infty)

2)

ОДЗ:   x^2-2x-8\geq0   ⇒      (x+2)(x-4)\geq 0   ⇒  x \in (-\infty; -2] \cup [4;+\infty)

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} \leq 0      ⇔

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} =0    или   (3^{x-2}-1)\cdot \sqrt{x^2-2x-6}

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} =0      ⇒     3^{x-2}-1=0   или   \sqrt{x^2-2x-8} =0   ⇒

x=2   или    x=-2     или    x=4

x=2       не входит в ОДЗ

два корня    x=-2     или    x=4

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8}     при    x \in (-\infty; -2] \cup [4;+\infty)

\sqrt{x^2-2x-8} 0,   тогда     3^{x-2}-1  ⇒     3^{x-2}   ⇒     x-2

C учетом      x \in (-\infty; -2] \cup [4;+\infty)  получаем ответ:  

(-\infty;-2]\cup \{2\}

3)

\sqrt{6\cdot 3^{x}-2} 3^{x}+1

Так как     3^{x}+1 0         при любых х, возводим данное неравенство в квадрат:

6\cdot 3^{x}-2(3^{x})^2+2\cdot 3^{x}+1

(3^{x})^2-4\cdot 3^{x}+3

D=16-12=4

(3^{x}-1)(3^{x}-3)

1< 3^{x}

Показательная функция с основанием 3 возрастает

0 < x < 1

О т в е т. (0;1)

4)

\sqrt{2\cdot 5^{x+1}-1} 5^{x}+2

Так как     5^{x}+2 0         при любых х, возводим данное неравенство в квадрат:

2\cdot 5^{x+1}-1(5^{x})^2+4\cdot 5^{x}+4

5^{x+1}=5\cdot 5^{x}

(5^{x})^2-6\cdot 5^{x}+5

D=36-20=16

(5^{x}-1)(5^{x}-5)

1< 5^{x}

Показательная функция с основанием 5 возрастает

0 < x < 1

О т в е т. (0;1)

         

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота