Постройте график квадратичной функции и опишите её свойства у=-2х²+8х-6
Объяснение:
у=-2х²+8х-6 ,это парабола ,ветви вниз ( -2<0).
1) Координаты вершины :
х₀=-в/2а, х₀=-8/(-2*2)=2 , у₀=-2*4+8*2-6=2, (2; 2).
2)Точки пересечения с осью ох ( у=0) ;
-2х²+8х-6 =0 , х²-4х-+3=0 , х₁=1 , х₂3 . Тогда ( 1;0) , (3;0).
3) Точки пересечения с осью оу(х=0);
у(0)=-2*0²+8*0-6 =-6 , Тогда ( 0; -6).
4) Доп.точки у=-2х²+8х-6 :
х: -1 4
у: -16 -6
Свойства функции у=-2х²+8х-6 :
а) Возрастает при х∈(-∞ ;2}, убывает при х∈[2 ;+∞).
б) Принимает положительные значения ( у>0) при х∈(1 ; 3) .
Принимает отрицательные значения (y<0) при х∈(-∞ ;1)∪(3 ;+∞).
Принимает значения равные нулю ( у=0) при х=1, 3.
в) Принимает наибольшее значение у=2 при х=2.
AB = CD = 6.
Поскольку BX и CY - биссектрисы, то ∠ABX = ∠XBC и ∠DCY = ∠YCB.
∠XBC = ∠BXA и ∠CYD = ∠YCB как накрест лежащие, следовательно, ΔABX и ΔCYD - равнобедренные ⇒ AB = AX = CD = DY = 6
AD = AX + XY + YD = 6 + 2 + 6 = 14
Рассмотрим второй случай, если BX и BY - пересекаются.
AY = AX - YX = DY - YX = DX = 4
AD = AY + YX + XD = 4 + 2 + 4 = 10
ответ: 14 или 10.
Постройте график квадратичной функции и опишите её свойства у=-2х²+8х-6
Объяснение:
у=-2х²+8х-6 ,это парабола ,ветви вниз ( -2<0).
1) Координаты вершины :
х₀=-в/2а, х₀=-8/(-2*2)=2 , у₀=-2*4+8*2-6=2, (2; 2).
2)Точки пересечения с осью ох ( у=0) ;
-2х²+8х-6 =0 , х²-4х-+3=0 , х₁=1 , х₂3 . Тогда ( 1;0) , (3;0).
3) Точки пересечения с осью оу(х=0);
у(0)=-2*0²+8*0-6 =-6 , Тогда ( 0; -6).
4) Доп.точки у=-2х²+8х-6 :
х: -1 4
у: -16 -6
Свойства функции у=-2х²+8х-6 :
а) Возрастает при х∈(-∞ ;2}, убывает при х∈[2 ;+∞).
б) Принимает положительные значения ( у>0) при х∈(1 ; 3) .
Принимает отрицательные значения (y<0) при х∈(-∞ ;1)∪(3 ;+∞).
Принимает значения равные нулю ( у=0) при х=1, 3.
в) Принимает наибольшее значение у=2 при х=2.
AB = CD = 6.
Поскольку BX и CY - биссектрисы, то ∠ABX = ∠XBC и ∠DCY = ∠YCB.
∠XBC = ∠BXA и ∠CYD = ∠YCB как накрест лежащие, следовательно, ΔABX и ΔCYD - равнобедренные ⇒ AB = AX = CD = DY = 6
AD = AX + XY + YD = 6 + 2 + 6 = 14
Рассмотрим второй случай, если BX и BY - пересекаются.
Поскольку BX и CY - биссектрисы, то ∠ABX = ∠XBC и ∠DCY = ∠YCB.
∠XBC = ∠BXA и ∠CYD = ∠YCB как накрест лежащие, следовательно, ΔABX и ΔCYD - равнобедренные ⇒ AB = AX = CD = DY = 6
AY = AX - YX = DY - YX = DX = 4
AD = AY + YX + XD = 4 + 2 + 4 = 10
ответ: 14 или 10.