1)
f'(x)=(x-2)*(x+3)'+(x-2)'*(x+3)=(x-2)*1+1*(x+3)=x-2+x+3=2x+1
f'(-1)=2*(-1)+1=-2+1=-1
2) f(x)=x+1/x-2
f'(x)=((x+1)'*(x-2)) - ((x+1)*(x-2)')/(x-2)^2=((x-2) - ( x+1)) /(x-2)^2= (x-2-x-1)/ /(x-2)^2=
-3/ (x-2)^2
f'(1)= -3/ /(1-2)^2 =-3/1= - 3
1)
f'(x)=(x-2)*(x+3)'+(x-2)'*(x+3)=(x-2)*1+1*(x+3)=x-2+x+3=2x+1
f'(-1)=2*(-1)+1=-2+1=-1
2) f(x)=x+1/x-2
f'(x)=((x+1)'*(x-2)) - ((x+1)*(x-2)')/(x-2)^2=((x-2) - ( x+1)) /(x-2)^2= (x-2-x-1)/ /(x-2)^2=
-3/ (x-2)^2
f'(1)= -3/ /(1-2)^2 =-3/1= - 3