Уравнение любой касательной к любому графику находится по формуле:
Где производная функции в данной точке. А точка касания по иксу.
1) Поначалу у функции мы должны найти производную общего типа этой функции. Это степенная функция, а производная любой степенной функции находится следующей формулой: - где n это степень. В нашем случае:
Так, нашли производную общего случая.
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
2) Опять же, найдем производную
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
То есть, берешь любой икс, и вставляешь в выражение касательной вместо и получаешь уравнение касательной.
Это и есть окончательные ответы. Если что-то не правильно, то это значит что вы не правильно написали условие.
За 1 день они оба выполнять 2/3:4 = 2/12 = 1/6 всей работы. Пусть первый рабочий выполняет всю работу за x дней. Тогда второй рабочий выполнит всю работу за x+5 дней. За 1 день первый выполняет 1/x часть работы, а второй - 1/(x+5) часть работы. Вместе они выполнят 1/x+1/(x+5) = (2x+5)/x(x+5). И это равно 1/6.
Решение x=-3 отбрасываем, т.к. число дней не может быть отрицательным. Значит, самостоятельно первый рабочий выполнит всю работу за 10 дней. Второй рабочий - за 10+5=15 дней. Вместе - за 6 дней.
Где производная функции в данной точке. А точка касания по иксу.
1)
Поначалу у функции мы должны найти производную общего типа этой функции.
Это степенная функция, а производная любой степенной функции находится следующей формулой:
- где n это степень.
В нашем случае:
Так, нашли производную общего случая.
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
2)
Опять же, найдем производную
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
То есть, берешь любой икс, и вставляешь в выражение касательной вместо и получаешь уравнение касательной.
Это и есть окончательные ответы.
Если что-то не правильно, то это значит что вы не правильно написали условие.
Пусть первый рабочий выполняет всю работу за x дней. Тогда второй рабочий выполнит всю работу за x+5 дней.
За 1 день первый выполняет 1/x часть работы, а второй - 1/(x+5) часть работы.
Вместе они выполнят 1/x+1/(x+5) = (2x+5)/x(x+5). И это равно 1/6.
Решение x=-3 отбрасываем, т.к. число дней не может быть отрицательным.
Значит, самостоятельно первый рабочий выполнит всю работу за 10 дней. Второй рабочий - за 10+5=15 дней. Вместе - за 6 дней.