Построим график функции у = 8 + 2x - x²
Для этого преобразуем её к виду
у = -(х² - 2х + 1) + 9
у = -(х - 1)² + 9
Видим, что парабола у = -х² сдвинута по оси абсцисс на 1 вправо и на 9 вверх. То есть её вершина находится в точке с координатами (1; 9).
Найдём координаты точек пересечения параболы с осью ординат.
При х = 0 у = 8
И координаты точек пересечения параболы с осью абсцисс
у = 0
- х² + 2х + 8 = 0
D = 2² - 4 · (-1) · 8 = 36
√D = 6
х₁ = -0,5(-2 - 6) = 4
х₂ = -0,5(-2 + 6) = -2
Итак мы получили ещё две точки параболы (4; 0) и (-2; 0).
Строим параболу (веточки её опущены вниз).
Смотри прикреплённый рисунок.
1) по графику видим, что функция убывает на интервале х ∈ [1; +∞)
2) множество решений неравенства 8 + 2x - x^2 ≤ 0 есть объединение двух интервалов х∈ (-∞; -2] ∪ [4; +∞)
Объяснение:
7 ) Позначимо для зручності вираз лівої частини даної рівності
буквою А та домножимо і поділимо цей вираз на sinβ/2 , далі перетворимо :
А =[sinαsinβ/2+sin(α+β)sinβ/2 +sin(α+2β)sinβ/2+...+sin(α+nβ)sinβ/2]:sinβ/2=
= 1/2[cos(α-β)-cos(α+β/2)+cos(α+β/2) - ...+cos(α+(2n-1)β/2) -
- cos(α+(2n+1)β/2)] /sinβ/2 = 1/2[ (cos(α - β) - cos(α+(2n+1)β/2)]/sinβ/2 =
= [ sin( n + 1 )/2 * sin ( α + nβ/2 ) ]/ sinβ/2 .
В результаті тотож. перетворень ми одержали праву частину даної
рівності . Отже , дана рівність є тотожністю .
Построим график функции у = 8 + 2x - x²
Для этого преобразуем её к виду
у = -(х² - 2х + 1) + 9
у = -(х - 1)² + 9
Видим, что парабола у = -х² сдвинута по оси абсцисс на 1 вправо и на 9 вверх. То есть её вершина находится в точке с координатами (1; 9).
Найдём координаты точек пересечения параболы с осью ординат.
При х = 0 у = 8
И координаты точек пересечения параболы с осью абсцисс
у = 0
- х² + 2х + 8 = 0
D = 2² - 4 · (-1) · 8 = 36
√D = 6
х₁ = -0,5(-2 - 6) = 4
х₂ = -0,5(-2 + 6) = -2
Итак мы получили ещё две точки параболы (4; 0) и (-2; 0).
Строим параболу (веточки её опущены вниз).
Смотри прикреплённый рисунок.
1) по графику видим, что функция убывает на интервале х ∈ [1; +∞)
2) множество решений неравенства 8 + 2x - x^2 ≤ 0 есть объединение двух интервалов х∈ (-∞; -2] ∪ [4; +∞)
Объяснение:
7 ) Позначимо для зручності вираз лівої частини даної рівності
буквою А та домножимо і поділимо цей вираз на sinβ/2 , далі перетворимо :
А =[sinαsinβ/2+sin(α+β)sinβ/2 +sin(α+2β)sinβ/2+...+sin(α+nβ)sinβ/2]:sinβ/2=
= 1/2[cos(α-β)-cos(α+β/2)+cos(α+β/2) - ...+cos(α+(2n-1)β/2) -
- cos(α+(2n+1)β/2)] /sinβ/2 = 1/2[ (cos(α - β) - cos(α+(2n+1)β/2)]/sinβ/2 =
= [ sin( n + 1 )/2 * sin ( α + nβ/2 ) ]/ sinβ/2 .
В результаті тотож. перетворень ми одержали праву частину даної
рівності . Отже , дана рівність є тотожністю .