4+0+...4(2-n)=2n(3-n) Док-во: 1) Проверим, что верно n=1: 4=2*1(3-1); 4=2(2); 4=4 -верно 2)Допустим, что верно для n=k, тогда: 4+...+4(2-k)=2k(3-k) 3)Докажем, что верно для n=k+1, тогда 4+...+4(2-(k+1))=2(k+1)(3-(k+1)); 4+...+4(2-1-k)=2(k+1)(3-1-k); 4+...+4(1-k)=2(k+1)(2-k) -? 4+...+4(1-k)=2(k+1)(2-k)=> {4+...+4(2-k)}+4(1-k)= то, что находится в {...} заменяем на то, что получили во втором шаге, т.е. на 2k(3-k), получаем = 2k(3-k)+4(1-k)=6k-2k^2+4-4k= 6k-4k-2k^2+4= 2k-2k^2+4= -(2k^2-2k-4) Раскладываем квадратное уравнение -(2k^2-2k-4)=0; D=4+32=36=6^2 k1=(2-6)/4=-4/4=-1; k2=(2+6)/4=10/4 => -(2k^2-2k-4)=-2(k-10/4)(k+1)=(-2k+5)(k+1)= =(5-2k)(k+1)=2(2.5-k)(k+1) Получается, что неверно, но м.б. я гдн-то ошибся, но в общем такого вида получается док-во
4+0+...4(2-n)=2n(3-n)
Док-во: 1) Проверим, что верно n=1: 4=2*1(3-1); 4=2(2); 4=4 -верно
2)Допустим, что верно для n=k, тогда: 4+...+4(2-k)=2k(3-k)
3)Докажем, что верно для n=k+1, тогда 4+...+4(2-(k+1))=2(k+1)(3-(k+1));
4+...+4(2-1-k)=2(k+1)(3-1-k); 4+...+4(1-k)=2(k+1)(2-k) -?
4+...+4(1-k)=2(k+1)(2-k)=> {4+...+4(2-k)}+4(1-k)= то, что находится в {...} заменяем на то, что получили во втором шаге, т.е. на 2k(3-k), получаем
= 2k(3-k)+4(1-k)=6k-2k^2+4-4k= 6k-4k-2k^2+4= 2k-2k^2+4= -(2k^2-2k-4)
Раскладываем квадратное уравнение -(2k^2-2k-4)=0; D=4+32=36=6^2
k1=(2-6)/4=-4/4=-1; k2=(2+6)/4=10/4 => -(2k^2-2k-4)=-2(k-10/4)(k+1)=(-2k+5)(k+1)=
=(5-2k)(k+1)=2(2.5-k)(k+1)
Получается, что неверно, но м.б. я гдн-то ошибся, но в общем такого вида получается док-во
2x−5y=12
Объяснение:
Подставим решение в каждое из представленных уравнений:
6x+11y=8
6*(-4)+11(-4)=8
-68≠8 не является решением уравнения
7x+8y=4
7*(-4)+8(-4)=4
-142≠4 не является решением уравнения
x−y=3
-4-(-4)=3
0≠3 не является решением уравнения
2x−5y=12
2*(-4)-5*(-4)=12
12=12 решение уравнения
7x−5y=3
7*(-4)-5(-4)=3
-8≠3 не является решением уравнения
45x−31y=13
45*(-4)-31*(-4)=13
-56≠13 не является решением уравнения
Значит уравнение, которое будет иметь решение (-4; -4) 2x−5y=12. Поскольку оба уравнение линейные значит решение будет единственным.
Значит система будет выглядит как:
2x−5y=12
−13x+8y=20