Пусть АВС- прямоугольный треугольник, катеты АВ = 36 см, АС = 48 см, ВС - гипотенуза.
Пусть D - точка на гипотенузе ВС. DE - отрезок, параллельный катету АВ (точка Е на стороне АС) , DF - отрезок, параллельный катету АС (точка F на стороне АВ) .
Нужно найти точку D, чтобы S - площадь прямоугольника AFDE была наибольшей.
Обозначим ЕС через Х, DE через Y.
Треугольники АВС и EDC подобны, Y/X = DE/EC = AB/AC = 36/48 = 3/4, то есть Y = (3/4)*X.
1.)Первое задание
1)9a^2-30a+25=(3a)^2-2*3a*5+5^2=(3a-5)
2)z^2 + 24z + 1 = невозможно использовать формулу
3)0,36х^2+1,2xy+y^2= (0,6x)^2 + 2*0,6x*y + y^2=(0,6x+y)
4)2,25t^2-3tk+k^2= (1,5t)^2 - 2*1,5t*k + k^2= (1,5t - k)
5)b^4 - 2b^2c^3+c^6= (b^2)^2 - 2*b^2*c^3 + (c^3)^2= (b^2 - c^3)
6)x^8+0,2x^4y^4+0,01y^8=(x^4)^2 + 2*x^4*0,1y^4 + 0,1y^8=(x^4+0,1y^4)
7)4m^4+4m^2n^3+n^6= (2m^2)^2 + 2*2m^2*n^3 + (n^3)^2=(2m^2+n^3)
8)0,16c^4-0,08c^2d+0,01d^2= (0,4c^2)^2 - 2*0,4c^2*0,1d + 0,01d^2=(0,4c^2-0,1d)
2.)Второе задание
1)49y^2+70yc+25c^2=(7y+5c)^2
2)169x^2-26xy+y^2=(13x-y)^2
Відповідь:
Пусть АВС- прямоугольный треугольник, катеты АВ = 36 см, АС = 48 см, ВС - гипотенуза.
Пусть D - точка на гипотенузе ВС. DE - отрезок, параллельный катету АВ (точка Е на стороне АС) , DF - отрезок, параллельный катету АС (точка F на стороне АВ) .
Нужно найти точку D, чтобы S - площадь прямоугольника AFDE была наибольшей.
Обозначим ЕС через Х, DE через Y.
Треугольники АВС и EDC подобны, Y/X = DE/EC = AB/AC = 36/48 = 3/4, то есть Y = (3/4)*X.
S = (48 - X)*Y = (48 - X)*(3/4)*X = (3/4)*(48*X - X^2) = (3/4)*(24^2 - 24^2 + 2*24*X - X^2) = (3/4)*(24^2 - (24 - X)^2).
Максимальное значение площадь прямоугольника достигает при Х = 24 см, то есть ЕС - половина катета АС.
Из подобия треугольников АВС и EDC следует, что отрезок DC - половина сгипотенузы ВС.
Точка D, при которой площадь прямоугольника AFDE наибольшая, середина гиптенузы ВС.
Пояснення: