Напиши уравнение прямой ax+by+c=0, все точки которой находятся на равных расстояниях от точек A(1;2) и B(7;9). (Число в ответе сокращать не нужно!) _*х+_*у+_=0
Система линейных уравнений, графиком каждого уравнения является прямая. Система не имеет решений, значит графики не пересекаются. Графики не пересекаются, значит прямые параллельны. Надо ответить на вопрос, когда прямые параллельны. Когда их коэффициенты при х и у пропорциональны 2:1=(-1):а а=-0,5
Но параллельные прямые могут совпасть, чтобы этого не случилось, надо чтобы отношение свободных коэффициентов не было пропорционально отношению коээфициентов при х и у. В нашем случае это так 2:1≠5:2 ответ. а=-0,5
При делении на 10 числа 21, 22 и 23 дают остатки 1, 2 и 3. 1^11 = 1 и число 21^11 оканчивается на 1. Степени двойки и тройки повторяются через каждые 4 шага (2, 4, 8, 16, 32 и 3, 9, 27, 81, 243). 12/4 = 3, поэтому 2^12 оканчивается на 6, так же, как и число 22^12. 13/4 = 3*4 +1, поэтому 3^13 оканчивается на 3, так же, как и число 23^13. Сумма остатков является числом, оканчивающимся на 1+6+3 = 10, т. е. на 0, а такое число кратно 10, следовательно все число 21^11+22^12+23^13 = 10k + 10, где k - натуральное, кратно 10.
Система не имеет решений, значит графики не пересекаются.
Графики не пересекаются, значит прямые параллельны.
Надо ответить на вопрос, когда прямые параллельны.
Когда их коэффициенты при х и у пропорциональны
2:1=(-1):а
а=-0,5
Но параллельные прямые могут совпасть, чтобы этого не случилось, надо чтобы отношение свободных коэффициентов не было пропорционально отношению коээфициентов при х и у.
В нашем случае это так
2:1≠5:2
ответ. а=-0,5