В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
DonP3dro
DonP3dro
17.11.2022 00:20 •  Алгебра

Напишите уравнение касательной к графику функции f'(x)=2-1/x в точке с абсциссой в точке x нулевое=0,5.

Показать ответ
Ответ:
shidiemmacom1
shidiemmacom1
09.07.2020 12:00
Решение смотри во вложении. Должно быть понятно
Напишите уравнение касательной к графику функции f'(x)=2-1/x в точке с абсциссой в точке x нулевое=0
0,0(0 оценок)
Ответ:
Smazi
Smazi
09.07.2020 12:00
Нам задано производную функции f'(x)=2-1/x. Для составления уравнения касательной нужно иметь саму функцию, поэтому f(x)=Int(2-1/x)=2x-ln(x)+C.
Значение функции f(1/2)=1+ln2+C (С можно принимать какое угодно число, примем С=0). Значение производной f'(1/2)=0. Тогда уравнение касательной запишется: y-(1+ln2)=0(x-1/2), y=1+ln2-уравнение касательной.
Если принять С=1, то уравнение касательной будет иметь вид y=2+ln2. Но тогда и функция будет иметь вид f(x)=2x-ln(x)+1. И т.д.
Даю примеры графиков этих функций и касательных в точке х0=0,5.

Напишите уравнение касательной к графику функции f'(x)=2-1/x в точке с абсциссой в точке x нулевое=0
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота