В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Andreyyy56
Andreyyy56
28.09.2022 17:50 •  Алгебра

Напишите уравнение касательной к графику функции f(x) в точке x0: а)f(x)=cosx,х0=2п/3; б)f(x)=sin^2x,х0=п/4

Показать ответ
Ответ:
тимур624
тимур624
02.07.2020 22:10
A)
f(x)=cos(x)
f`=-sin(x)
x0=2pi/3
f(x=2pi/3)=cos(2*pi/3)=-0,5
f`(x=2pi/3)=-sin(2*pi/3)=-корень(3)/2
уравнение касательной
y=(x-2*pi/3)*(-корень(3)/2) - 0,5

 б)
f(x)=sin^2x,х0=п/4
f`=2sin(x)*cos(x)=sin(2x)
f`(х=п/4)=sin(pi/2)=1
f(x=pi/4)=(sin(pi/4))^2=1/2
уравнение касательной
y=(x-pi/4)*1 + 0,5
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота