Порядок числа а - (-5), при умножении на 10, это число станет (-4) порядка, это дробь, у которой есть десятитысячные доли, например: 2,7*10^(-4); если прибавить число 4 порядка, то порядок суммы не изменится. В числе В есть десятки тысяч, от прибавления десятичной дроби они не изменятся. Например: числа 1,0*10^4 - число 4 порядка; 9,765*10^4 -число 4 порядка. Это стандартная запись числа. От прибавления малюсенькой дроби сумма останется 4 порядка. ответ: сумма 4 порядка. Частный случай: при В=9,99999999, а далее любые цифры, при прибавлении числа (-4) порядка, в сумме получим число 5 порядка, т.к. в ответе будет 10,0000000*10^4=1,00000000*10^5. ответ: сумма 4 порядка, но в частном случае сумма может стать 5 порядка.
Количество целых решений неравенства 7/(x² -5x+6) +9/(x-3) < -1, принадлежащих отрезку [-6;0) равно:
* * * x²+px + q =(x -x₁)(x - x₂) * * *
7/(x² -5x+6) +9/(x-3) < -1⇔7/(x -2)(x-3) +9/(x-3) +1 < 0⇔
(7 + 9x-18 + x² -5x+6 ) / (x -2)(x-3) < 0 ⇔( x² +4x- 5) / (x -2)(x-3) < 0 ⇔
( x +5)(x- 1) / (x -2)(x-3) < 0 ⇔ ( x +5)(x -1)(x -2)(x-3) < 0
"+" " - " "+" "-" "+"
(-5) (1) (2) ( 3)
x ∈( - 5; 1) ∪ (2 ; 3)
Количество целых решений неравенства , принадлежащих отрезку [-6;0) равно: (-4) +(-3) +(-2) +(-1) = -10 .
ответ: -10.
Частный случай: при В=9,99999999, а далее любые цифры, при прибавлении числа (-4) порядка, в сумме получим число 5 порядка, т.к. в ответе будет 10,0000000*10^4=1,00000000*10^5.
ответ: сумма 4 порядка, но в частном случае сумма может стать 5 порядка.