Напишите выражение для нахождения площади поверхности куба, используя формулу S= 6a² b) Напишите выражение для нахождения объема куба, используя формулу V = a³
Довольно интересная задача) нарисуем график первого уравнения: это ромб с центром в (0,0) и вершинами в (1,0), (0,1), (-1,0), (0,-1). нарисуем график второго уравнения: это круг с центром в (0,0) и радиусом, равным корню из А. ровно четыре решения можно получить только в том случае, когда ромб и круг будут пересекаться ровно в 4 точках, тут 2 варианта: 1) эти четыре точки будут как раз вершинами ромба, у круга в таком случае будет радиус, равный 1. Соответственно: корень из А равен 1, значит А = 1. ответ: А = 1. 2) эти четыре точки будут образованы внутренним касанием кругом ромба. тогда нужно вычислить радиус вписанной окружности. ребро ромба вычисляем по теореме Пифагора - это корень из 2. полребра соответственно корень из 2 пополам. далее по теореме Пифагора высота треугольника, образованного четвертинкой ромба, будет равна , значит А равно . ответ: А = . То есть получается два варианта на параметр А.
Чтобы определить который из заданных чисел принадлежит промежутку [7; 8] необходимо сравнивать числа с границей промежутка. Но заданные числа иррациональные и поэтому будем сравнивать квадраты чисел с квадратом границ промежутка:
7²=49, 8²=64.
1) (√7)² = 7 и 7<49<64, что означает: √7 не принадлежит промежутку [7;8];
2) (√8)² = 8 и 8<49<64, что означает: √8 не принадлежит промежутку [7;8];
3) (√42)² = 42 и 42<49<64, что означает: √42 не принадлежит промежутку [7;8];
4) (√61)² = 61 и 49≤61≤64, что означает: √61 принадлежит промежутку [7;8].
нарисуем график первого уравнения:
это ромб с центром в (0,0) и вершинами в (1,0), (0,1), (-1,0), (0,-1).
нарисуем график второго уравнения:
это круг с центром в (0,0) и радиусом, равным корню из А.
ровно четыре решения можно получить только в том случае, когда ромб и круг будут пересекаться ровно в 4 точках, тут 2 варианта:
1) эти четыре точки будут как раз вершинами ромба, у круга в таком случае будет радиус, равный 1. Соответственно: корень из А равен 1, значит А = 1.
ответ: А = 1.
2) эти четыре точки будут образованы внутренним касанием кругом ромба.
тогда нужно вычислить радиус вписанной окружности.
ребро ромба вычисляем по теореме Пифагора - это корень из 2.
полребра соответственно корень из 2 пополам.
далее по теореме Пифагора высота треугольника, образованного четвертинкой ромба, будет равна , значит А равно .
ответ: А = .
То есть получается два варианта на параметр А.
4) √61
Объяснение:
Чтобы определить который из заданных чисел принадлежит промежутку [7; 8] необходимо сравнивать числа с границей промежутка. Но заданные числа иррациональные и поэтому будем сравнивать квадраты чисел с квадратом границ промежутка:
7²=49, 8²=64.
1) (√7)² = 7 и 7<49<64, что означает: √7 не принадлежит промежутку [7;8];
2) (√8)² = 8 и 8<49<64, что означает: √8 не принадлежит промежутку [7;8];
3) (√42)² = 42 и 42<49<64, что означает: √42 не принадлежит промежутку [7;8];
4) (√61)² = 61 и 49≤61≤64, что означает: √61 принадлежит промежутку [7;8].