Свежие фрукты содержат 72% воды, значит сухого вещества остается 100-72=28% Сухие фрукты содержат 20% воды, значит сухого вещества в них - 80%. Когда сушат фрукты то испаряется только вода, а сухое вещество остается. В 20 кг свежих фруктов содержится 28% сухого вещества, т.е. 20*28/100=5,6 кг, но идеально высушить фрукты не удается, поэтому часть воды остается, как видно из состава сухофруктов влаги в них в 4 раза меньше, чем сухого вещества, т.е. на 5,6 кг сухого вещества приходится, 5,6/4=1,4кг влаги. Будет 5,6+1,4 = 7кг сухофруктов всё ясно?
Пусть на запад идёт более медленный теплоход со скоростью Х, тогда скорость второго Х+6. Пройденный путь у первого за два часа составит 2*Х, у второго 2*(Х+6)=2*Х+12. Движутся они перпендикулярно друг другу, так что можно представить прямоугольный треугольник с катетами 2*Х и 2*Х+12 и гипотенузой 60. По теореме Пифагора: 60*60=2*Х*2*Х + (2*Х+12)*(2*Х+12) 3600 = 4*Х^2 + 4*X^2 + 48*X + 144 Переносим всё вправо: 8*X^2 + 48*X - 3456 = 0 Для упрощения сократим на 8: X^2 + 6*X - 432 = 0 Решаем квадратное уравнение. Дискриминант: D = 6*6 + 4*432 = 36 + 1728 = 42^2 Корни: X1,2 = (-6 +- 42) / 2 = {-24; 18} В нашей ситуации скорость отрицательной быть не должна, поэтому отбрасываем первый корень. Значит подходит Х=18, то есть скорость первого корабля 18 км/ч, а скорость второго 24 км/ч. Можно проверить.
60*60=2*Х*2*Х + (2*Х+12)*(2*Х+12)
3600 = 4*Х^2 + 4*X^2 + 48*X + 144
Переносим всё вправо:
8*X^2 + 48*X - 3456 = 0
Для упрощения сократим на 8:
X^2 + 6*X - 432 = 0
Решаем квадратное уравнение. Дискриминант:
D = 6*6 + 4*432 = 36 + 1728 = 42^2
Корни:
X1,2 = (-6 +- 42) / 2 = {-24; 18}
В нашей ситуации скорость отрицательной быть не должна, поэтому отбрасываем первый корень. Значит подходит Х=18, то есть скорость первого корабля 18 км/ч, а скорость второго 24 км/ч.
Можно проверить.