Найди утверждения, соответствующие данной записи H∈m. 1.ТочкаHне находится на прямойm
2.Прямаяmпроходит через точкуH
3.ТочкаHне принадлежит прямойm
4.ПрямаяHпроходит через точкуm
5.ТочкаHявляется точкой прямойm
6.ТочкаHнаходится на прямойm
7.Прямаяmне проходит через точкуH
Обозначим числитель дроби за (х), а знаменатель за (у), дробь выглядит так:
х/у
Прибавим к числителю и знаменателю данной дроби по (1), получим уравнение:
(х+1)/(у+1)=1/2
Вычтем из числителя и знаменателя дроби х/у по (1), получим уравнение:
(х-1)/(у-1)=1/3
Решим получившуюся систему уравнений:
(х+1)/(у+1)=1/2
(х-1)/(у-1)=1/3
(х+1)=1/2*(у+1) Приведём к общему знаменателю 2
(х-1)=1/3*(у-1) Приведём к общему знаменателю 3
2х+2=у+1
3х-3=у-1
2х-у=1-2
3х-у=-1+3
2х-у=-1
3х-у=2
Вычтем из первого уравнения второе уравнение:
2х-у-3х+у=-1-2
-х=-3
х=-3 : -1
х=3
Подставим значение х=3 в первое уравнение:
2*3 -у=-1
-у=-1-6
-у=-7
у=-7 : -1
у=7
Отсюда: х/у=3/7
ответ: Искомая дробь равна 3/7
1) Обозначим за х км/ч — собственную скорость катера (ее скорость в стоячей воде), х > 0.
2) Тогда (х + 2) км/ч — скорость катера при движении по течению реки.
3) (60 : (х + 2)) часов шел катер по реке, (36 : х) часов — по озеру.
4) (60 : (х + 2) + 36 : х) часов ушло у катера на весь путь.
5) По условию задачи весь путь занял 5 часов, поэтому запишем равенство:
60 : (х + 2) + 36 : х = 5.
6) Решаем уравнение:
60х + 36 * (х + 2) = 5х * (х + 2);
60х + 36х + 72 = 5х^2 + 10х;
5х^2 - 86х - 72 = 0.
D = (-86)^2 - 4 * 5 * (-72) = 8836.
х1 = -0,8, х2 = 18.
7) х = 18 км/ч — собственная скорость катера
ответ: 18 км/ч.