Первое выражение - знаменатель не может быть равен 0, тк на 0 делить нельзя. Поэтому решаем уравнение (a+3)²=0 и получившееся значение переменной нужно будет исключить. Решаем: a²+6a+9=0 D=0, один корень: а=-6/2=-3 Теперь мы видим, что из множества всех значений этого выражения нужно "выбить" точку а=-3, потому что при этом значении переменной знаменатель =0⇒ выражение не имеет смысла. Следовательно, А-2 Так, рассуждаем дальше. Второе выражение: Знаменатель в данном случае не будет равен нулю никогда - подставим ли мы 0, 3 или -3 - не важно. Можно это проверить - решим уравнение а²+9=0 Получаем а²=-9. Любое число в квадрате не может быть отрицательным, поэтому это уравнение решений не имеет. Поэтому х в данном случае может быть любым числом. ответ - Б-3. И последнее выражение. Поступаем аналогично. (а+3)(3-а)=0 3²-а²=0 а²=9 а1=-3, а2=3, обе эти точки не входят в множество значений этого выражения, при них знаменатель будет нулевой, поэтому ответ В-4. Жду вопросов
Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса: Не имеют корней; Имеют ровно один корень; Имеют два различных корня. В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.ДискриминантПусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно: Если D < 0, корней нет; Если D = 0, есть ровно один корень; Если D > 0, корней будет два.
a²+6a+9=0
D=0, один корень:
а=-6/2=-3
Теперь мы видим, что из множества всех значений этого выражения нужно "выбить" точку а=-3, потому что при этом значении переменной знаменатель =0⇒ выражение не имеет смысла. Следовательно, А-2
Так, рассуждаем дальше. Второе выражение:
Знаменатель в данном случае не будет равен нулю никогда - подставим ли мы 0, 3 или -3 - не важно. Можно это проверить - решим уравнение а²+9=0
Получаем а²=-9. Любое число в квадрате не может быть отрицательным, поэтому это уравнение решений не имеет. Поэтому х в данном случае может быть любым числом. ответ - Б-3.
И последнее выражение. Поступаем аналогично.
(а+3)(3-а)=0
3²-а²=0
а²=9
а1=-3, а2=3, обе эти точки не входят в множество значений этого выражения, при них знаменатель будет нулевой, поэтому ответ В-4. Жду вопросов