В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
рахима5Е
рахима5Е
22.01.2021 12:49 •  Алгебра

Найдите больший корень уравнения (x^2-7)(2x-5)=0

Показать ответ
Ответ:
Пони0с0радушкой
Пони0с0радушкой
01.07.2020 15:26
В решении выше допущено 2 ошибки.
Первая ---арифметическая: -3+2=-1, а не -5;
вторая, более существенная, связана с неравносильностью преобразований.

Правильный ответ: х=3.

Прежде всего заметим, что при возведении уравнения в квадрат могут появиться новые корни, а именно корни уравнения -(х-1)=sqrt(2x^2-3x–5). Это произойдёт в том случае, если (х-1) < 0, т. е. при x < 1.
Если же х-1 >= 0, то корень уравнения (х-1)^2=(sqrt(2x^2-3x–5))^2 будет также корнем исходного уравнения. Таким образом, исходное уравнение эквивалентно
не уравнению
(х-1)^2=2x^2-3x–5,

а системе
(х-1)^2=2x^2-3x–5,
x >=1.

Сначала решаем уравнение:
(х-1)^2=2x^2-3x–5
2x^2-3x–5-x^2+2x-1=0
x^2-x-6=0
x1=3, x2=-2.
Второй корень не удовлетворяет условию x >=1, и, следовательно, не является корнем исходного уравнения. (Действительно, в этом случае sqrt(2x^2-3x–5)=3, а х-1=-3).
Первый корень удовлетворяет условию x >=1, и, следовательно, является также корнем исходного уравнения. (Действительно, в этом случае sqrt(2x^2-3x–5)=2=х-1).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота