В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
janneellz
janneellz
21.10.2022 04:16 •  Алгебра

Найдите целое число n,при котором значение дроби 13n^2+56n-38: n+5 является целым положительным числом

Показать ответ
Ответ:
ASK231
ASK231
03.10.2020 10:35
(13n^2 + 56n - 38) / (n+5)

13*(n+5)^2 = 13*n^2 + 130n + 325

13n^2 + 56n - 38 = 13n^2 + 56n+74n-74n - 38+363-363 =
= 13*(n+5)^2 - 74n - 363 = 13*(n+5)^2 - 74n - 370 + 7 =
= 13*(n+5)^2 - 74(n+5) + 7
если почленно разделить эту сумму на знаменатель, получится: 13*(n+5) - 74 + 7 / (n+5)
очевидно, чтобы третье слагаемое тоже было целым, необходимо, чтобы n = 2
можно проверить: 13*4+56*2-38 = 126
126 / 7 = 18
0,0(0 оценок)
Ответ:
Nikto58
Nikto58
03.10.2020 10:35
Можно деление  "в столбик" .

(13n^2 +56n - 38) / (n+5) = ((13n^2 + 65n) -(9n +45)+ 7) /(n+5) = 
(13n(n+5) -9(n+5) +7 ) /(n+5) = 13n-9 +7/(n+5) .
7/(n+5) будет целым, если  n+5 =[ ±1 ;±7. ⇔n ∈ {-12 ; - 6;  ;-4 ; 2} ,но
13n-9 +7/(n+5) будет целым положительным только  при n=2.

ответ:  2 .
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота