Найдите для функции у=х^2 + 4х +3. a) область определения функции; б) множество значений функции; в) наименышее (наибольшее) значение функции;B г) уравнение оси симметрии параболы3 д) нули функции; e) промежутки знакопостоянства функции; ж) промежутки монотонности функции.
х+4= -2, х= -8
2) 1/2 в степени х-4 = (1/2) в -6 степени
х-4=-6, х= -2
3) 1/3 = (1/3) в степени -10х+3
1=-10х+3, х= 1/5
4) 4 в степени 5х-10 = 4 в степени 5
5х-10=1, х= 2,2
5) 0,1 в степени х-5 = 0,1 в степени -2
х-5=-2, х= 3
6) 1/5 в степени 2х-2 = (1/5) в степени -4
2х-2=-4, х= -1
7) 1/4 в степени х-4 = (1/4) в степени -3х
х-4=-3х, х=1
8) 1/11 в степени х-5 = (1/11) в степени -2
х-5=-2, х=3
9) 7 в степени 2х-2 = 7 в степени -1
2х-2=-1, х= 0,5
10) 1/4 в степени 2х-2 = 1/4 в степени -4
2х-2=-4, х=-1
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z