"останется хотя бы 3 патрона"-это может остаться 3 патрона или 4 патрона или 5 патронов вероятность "попасть в мишень"=0,7 вероятность "не попасть в мишень"=1-0,7=0,3 останется три патрона-это значит стрелок 2 раза не попал, а на третий раз попал, вероятность Р₁=0,3·0,3·0,7=0,063 останется четыре патрона-это значит стрелок первый раз не попал, а второй попал, вероятность Р₂=0,3·0,7=0,21 останется пять патронов-это значит стрелок попал с первого раза Р₃=0,7 события несовместные Р=Р₁+Р₂+Р₃ Р=0,063+0,21+0,7=0,973
Пусть числа a,b,c составляют геометрическую прогрессию, тогда b²=ac увеличим второе число на 8,тогда a,b+8,c составляют арифметическую прогрессию ⇒ 2(b+8)=a+c увеличим третье число на 64 ,тогда a,b+8,c+64 составляют геометрическую прогрессию ⇒ (b+8)²=a(c+64)
имеем систему из трех уравнений с тремя неизвестными
вероятность "попасть в мишень"=0,7
вероятность "не попасть в мишень"=1-0,7=0,3
останется три патрона-это значит стрелок 2 раза не попал, а на третий раз попал, вероятность Р₁=0,3·0,3·0,7=0,063
останется четыре патрона-это значит стрелок первый раз не попал, а второй попал, вероятность Р₂=0,3·0,7=0,21
останется пять патронов-это значит стрелок попал с первого раза Р₃=0,7
события несовместные Р=Р₁+Р₂+Р₃ Р=0,063+0,21+0,7=0,973
b²=ac
увеличим второе число на 8,тогда a,b+8,c составляют арифметическую прогрессию ⇒
2(b+8)=a+c
увеличим третье число на 64 ,тогда a,b+8,c+64 составляют геометрическую прогрессию ⇒
(b+8)²=a(c+64)
имеем систему из трех уравнений с тремя неизвестными
{b²=ac {b²=ac
{2(b+8)=a+c {2b+16=a+c
{(b+8)²=a(c+64) {b²+16b+64=ac+64a
{b²=ac {b²=ac
{c=2b+16-a {c=2b+16-a
{ac+16b+64=ac+64a {b=4a-4
{b²=ac
{c=2(4a-4)+16-a=8a-8+16-a=7a+8
{b=4a-4
(4a-4)²=a(7a+8)
16a²-32a+16=7a²+8a
9a²-40a+16=0
D=1600-576=1024=32²
a=(40+32)/18=4
b=4*4-4=12
c=7*4+8=36
или
a=(40-32)/18=8/18=4/9
b=4*4/9-4=16/9-4=-20/9
c=7*4/9+8=28/9+8=(28+72)/9=100/9
ответ: 4;12;36 или 4/9;-20/9;100/9