В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
1g00se1
1g00se1
27.11.2022 08:48 •  Алгебра

Найдите f'(x) и f'(x0) если: а) f(x)=-5x^4+4x^3+6x^2+2x+3, x0=1; б) f(x)=x tg x, x0=п/4

Показать ответ
Ответ:
iodin
iodin
30.07.2020 06:26
A) Найдем производную функции f
f'(x)=(-5x^4+4x^3+6x^2+2x+3)'=-20x^3+12x^2+12x+2

Найдем значения производной в точке х0.
f'(1)=-20\cdot1^3+12\cdot1^2+12\cdot1+2=6

б) Производная функции f(x)
f'(x)=(x\cdot tgx)'=x'\cdot tgx+x\cdot(tgx)'=tgx+x\cdot \frac{1}{\cos^2x}

Производная в точке x0=pi/4
f'( \frac{\pi}{4} )=tg(\frac{\pi}{4})+\frac{\pi}{4}\cdot \frac{1}{\cos^2(\frac{\pi}{4})} =1+ \frac{\pi}{2}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота