Cos(5*x) = 0 5*x = acos(0) + pi*n, или 5*x = pi/2 + pi*n, где n - любое целое число разделим обе части полученного ур-ния на 5 получим ответ: x = (pi/2 + pi*n)/5 sin4x=0 4*x = asin(0) + 2*pi*n, или 4*x = 2*pi*n разделим обе части полученного ур-ния на 4 получим ответ: x = pi*n/2 sinx/2=0 x/2 = asin(0) + 2*pi*n, или x/2 = 2*pi*n разделим обе части полученного ур-ния на 1/2 получим ответ: x = 4*pi*n cosx/3=0 x/3 = acos(0) + pi*n, или x/3 = pi/2 + pi*n разделим обе части полученного ур-ния на 1/3 получим ответ: x = 3*(pi/2 + pi*n) sin(3x+п/4)=0 3*x + pi/4 = asin(0) + 2*pi*n, или 3*x + pi/4 = 2*pi*n перенесём pi/4 в правую часть ур-ния с противоположным знаком, итого: 3*x = -pi/4 + 2*pi*n разделим обе части полученного ур-ния на 3 получим ответ: x = (-pi/4 + 2*pi*n)/3 cos(8x+п/3)=0 8*x + pi/3 = acos(0) + pi*n, или 8*x + pi/3 = pi/2 + pi*n перенесём pi/3 в правую часть ур-ния с противоположным знаком, итого: 8*x = pi/6 + pi*n разделим обе части полученного ур-ния на 8 получим ответ: x = (pi/6 + pi*n)/8 sin(x/7+п/3)=0 x/7 + pi/3 = asin(0) + 2*pi*n, или x/7 + pi/3 = 2*pi*n перенесём pi/3 в правую часть ур-ния с противоположным знаком, итого: x/7 = -pi/3 + 2*pi*n разделим обе части полученного ур-ния на 1/7 получим ответ: x = 7*(-pi/3 + 2*pi*n) cos(x/3+п/6)=0 x/3 + pi/6 = acos(0) + pi*n, или x/3 + pi/6 = pi/2 + pi*n, где n - любое целое число перенесём pi/6 в правую часть ур-ния с противоположным знаком, итого: x/3 = pi/3 + pi*n разделим обе части полученного ур-ния на 1/3 получим ответ: x = 3*(pi/3 + pi*n)
Испытание состоит в том, что два раза подряд бросают игральный кубик.
Число исходов испытания
n=6·6=36
Результаты можно изобразить в виде таблицы:
( см. рис.1)
Первая цифра -число очков, выпавшее на первом кубике,
вторая цифра - число очков, выпавшее на первом кубике.
Получаем 36 двузначных чисел:
от 11 до 16; от 21 до 26; ... от 61 до 66.
Событие A-"результатом двух последовательных бросков игрального кубика будет число, кратное трем"
m=12 ( cм. рис. 2)
это двузначные числа:
12;15; 21;24;33;36;42;45;51;54;63;66
По формуле классической вероятности
p(A)=m/n=12/36=1/3