Решение: по теореме пифагора сумма квадратов катетов равна квадрату гипотенузы пусть х - наш искомый катет, то второй катет будет х-7, а гипотенуза х+1 составим уравнение: х²+(х-7)² = (х+1)² х²+х²-14х+49 = х²+2х+1 2х²-14х+49 = х²+2х+1 х²-16х+48 = 0
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
Переводим 20 мин. - это 1/3 часа.
Чем больше скорость,чем меньше время,значит,
30/x - 30/( x + 3) = 1/3
(30x + 90 - 30x) / x( x + 3) = 1/3
90/(x² + 3x) = 1/3
x² + 3x - 270 =0
D = b² - 4ac =9 + 1080 = 1089 = 33²
x1= ( - 3 + 33) / 2 = 15
x2 = ( - 3 - 33) / 2 = - 18 - меньше 0-не походит.
Значит,скорость второго лыжника - 15 км/ч
скорость первого 18 км/ч
ответ: 15 км/ч, 18 км/ч