В выражении присутствуют формулы квадрат суммы и разность квадратов, раскрываем скобки, с учётом знаков перед скобкой, в данном случае "-", следовательно, все знаки внутри скобок меняем на противоположные. Потом взаимоуничтожаем a² и -a², приводим подобные члены и получаем 4ab+5b². Далее находим значение выражения 4ab+5b², при установленных значениях, для этого подставляем числа в полученное выражение и решаем.
4ab+5b²;
при a=1; b=⅕ ответ: 1
Объяснение:
(a + 2b)²- (a - b)(b + a) = a²+ 4ab + 4b² - (a²- b²) = a² + 4ab + 4b² - a² +b²
взаимоуничтожаем a² и -a², приводим подобные члены и получаем: 4ab+5b²
при a=1; b=⅕ 4ab+5b²= 4×1×0,2 + 5×0,2² = 0,8 + 0,2 = 1
В выражении присутствуют формулы квадрат суммы и разность квадратов, раскрываем скобки, с учётом знаков перед скобкой, в данном случае "-", следовательно, все знаки внутри скобок меняем на противоположные. Потом взаимоуничтожаем a² и -a², приводим подобные члены и получаем 4ab+5b². Далее находим значение выражения 4ab+5b², при установленных значениях, для этого подставляем числа в полученное выражение и решаем.
1.
Пусть:
x² = t
При этом t≥0
Тогда:
t² - 5t - 36 = 0
D = 25 + 36*4 = 169
t1 = (5+13)/2 = 9; t2 = (5-13)/2 = -4
t2 < 0 => корень уравнения один - t1.
x = √t, x = √9 = ±3
ответ: -3, 3
2. Дано:
s1 = 32 км
s2 = 12 км
t0 = 2 ч
u = 3 км/ч
Найти: v
А. Движение по течению:
v1 = v+u = v + 3, s1 = 32 км.
Б. Движение против течения:
v2 = v-u = v-3, s2 = 12 км.
В. t = s/v
2 = 32/(v+3) + 12/(v-3).
Откуда после несложных преобразований получаем:
v² - 22v + 21 = 0
v1 = 1, v2 = 21.
корень v1 не подходит, следовательно v = 21 км/ч
ответ: 21 км/ч