Уравнение касательной для функции f(x) = e^x в точке x = x0 имеет вид y = (e^x0) * x + b { Общее уравнение касательной для функции f(x): y = mx+b, где m - slope factor,m = d/dx*f(x), в нашем случае m=d/dx*f(x) = (e^x)' = e^x } если прямая y=x+1 есть касательная к f(x), тогда m =1, b=1 т.к. формула касательной для нашей функции y = (e^x0) * x + b, то e^x0 = 1, b = 1, откуда x0 = 0, в точке x0 должна также совпасть координата y0 (значение функции f(x0) и точка касательной y(0)), действительно, f(0) = e^0 = 1, y(0) = e^0 * 0 + 1 = 1, совпадают, f(0) = y(0) = 1 таким образом прямая y=x+1 является касательной к y = e^x в точке с координатами (0,1)
Алгебра. Найдите сумму корней квадратного уравнения x^2-13x-7=0 Первый По теореме Виета В уравнении вида x²+px+q=0 сумма корней равна х₁+х₂=-р произведение корней равно х₁*х₂=q Отсюда х₁+ х₂=13 Второй не рациональный, верный, но трудоемкий) Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле Д=в²-4ас=(-13)²-4*1*(-7)=169+28=197 Корни квадратного уравнения определим по формуле х₁=-в+√Д/2а=13+√197/2*1=13+√197/2 х₂=-в-√Д/2а=13-√197/2*1=13-√197/2
имеет вид y = (e^x0) * x + b
{
Общее уравнение касательной для функции f(x): y = mx+b,
где m - slope factor,m = d/dx*f(x),
в нашем случае m=d/dx*f(x) = (e^x)' = e^x
}
если прямая y=x+1 есть касательная к f(x), тогда m =1, b=1
т.к. формула касательной для нашей функции y = (e^x0) * x + b, то
e^x0 = 1, b = 1, откуда x0 = 0,
в точке x0 должна также совпасть координата y0 (значение функции f(x0) и точка касательной y(0)),
действительно, f(0) = e^0 = 1, y(0) = e^0 * 0 + 1 = 1,
совпадают, f(0) = y(0) = 1
таким образом прямая y=x+1 является касательной к y = e^x в точке с координатами (0,1)
Первый
По теореме Виета
В уравнении вида x²+px+q=0
сумма корней равна х₁+х₂=-р
произведение корней равно х₁*х₂=q
Отсюда х₁+ х₂=13
Второй не рациональный, верный, но трудоемкий)
Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле
Д=в²-4ас=(-13)²-4*1*(-7)=169+28=197
Корни квадратного уравнения определим по формуле
х₁=-в+√Д/2а=13+√197/2*1=13+√197/2
х₂=-в-√Д/2а=13-√197/2*1=13-√197/2
х₁+ х₂=(13+√197)/2+(13-√197)/2=(13+√197+13-√197)/2=26/2=13
Удачи!